aboutsummaryrefslogtreecommitdiff
path: root/src/client/cognitive_services/CognitiveServices.ts
diff options
context:
space:
mode:
Diffstat (limited to 'src/client/cognitive_services/CognitiveServices.ts')
-rw-r--r--src/client/cognitive_services/CognitiveServices.ts24
1 files changed, 15 insertions, 9 deletions
diff --git a/src/client/cognitive_services/CognitiveServices.ts b/src/client/cognitive_services/CognitiveServices.ts
index 75d0760ed..874ee433d 100644
--- a/src/client/cognitive_services/CognitiveServices.ts
+++ b/src/client/cognitive_services/CognitiveServices.ts
@@ -263,29 +263,35 @@ export namespace CognitiveServices {
export namespace Appliers {
- export async function vectorize(keyterms: any) {
+ export async function vectorize(keyterms: any, dataDoc: Doc, mainDoc: boolean = false) {
console.log("vectorizing...");
//keyterms = ["father", "king"];
let args = { method: 'POST', uri: Utils.prepend("/recommender"), body: { keyphrases: keyterms }, json: true };
await requestPromise.post(args).then(async (wordvecs) => {
- var vectorValues = new Set<number[]>();
- wordvecs.forEach((wordvec: any) => {
- //console.log(wordvec.word);
- vectorValues.add(wordvec.values as number[]);
- });
- ClientRecommender.Instance.mean(vectorValues);
+ if (wordvecs.length > 0) {
+ console.log("successful vectorization!");
+ var vectorValues = new Set<number[]>();
+ wordvecs.forEach((wordvec: any) => {
+ //console.log(wordvec.word);
+ vectorValues.add(wordvec.values as number[]);
+ });
+ ClientRecommender.Instance.mean(vectorValues, dataDoc, mainDoc);
+ } // adds document to internal doc set
+ else {
+ console.log("unsuccessful :( word(s) not in vocabulary");
+ }
//console.log(vectorValues.size);
});
}
- export const analyzer = async (target: Doc, keys: string[], data: string, converter: Converter) => {
+ export const analyzer = async (dataDoc: Doc, target: Doc, keys: string[], data: string, converter: Converter, mainDoc: boolean = false) => {
let results = await ExecuteQuery(Service.Text, Manager, data);
console.log(results);
let keyterms = converter(results);
//target[keys[0]] = Docs.Get.DocumentHierarchyFromJson(results, "Key Word Analysis");
target[keys[0]] = keyterms;
console.log("analyzed!");
- await vectorize(keyterms);
+ await vectorize(keyterms, dataDoc, mainDoc);
};
}