diff options
Diffstat (limited to 'hw3/DrivenPendulum.jl')
-rw-r--r-- | hw3/DrivenPendulum.jl | 70 |
1 files changed, 70 insertions, 0 deletions
diff --git a/hw3/DrivenPendulum.jl b/hw3/DrivenPendulum.jl new file mode 100644 index 0000000..8fe6a14 --- /dev/null +++ b/hw3/DrivenPendulum.jl @@ -0,0 +1,70 @@ +#!/Applications/Julia-1.8.app/Contents/Resources/julia/bin/julia + +# Simulate driven pendulum to find chaotic regime + +using Plots # for plotting trajectory +using DifferentialEquations # for solving ODEs + +ω0 = 1.0 # ω0^2 = g/l +β = 0.0001 # β = friction +f = 0.5 # forcing amplitude +ω = 1.01 # forcing frequency +param = (ω0, β, f, ω) # parameters of anharmonic oscillator + +function tendency!(dθp::Vector{Float64}, θp::Vector{Float64}, param, t::Float64) + + (θ, p) = θp # 2d phase space + + (ω0, β, f, ω) = param + + a = -ω0^2 * sin(θ) - β * p + f * forcing(t, ω) # acceleration with m = 1 + + dθp[1] = p + dθp[2] = a + +end + +function forcing(t::Float64, ω::Float64) + + return cos(ω * t) + +end + +function energy(θp::Vector{Float64}, param) + + (θ, p) = θp + + (ω0, β, f, ω) = param + + pe = ω0^2 * (1.0 - cos(θ)) + ke = 0.5 * p^2 + + return pe + ke + +end + +θ0 = 0.0 # initial position in meters +p0 = 0.0 # initial velocity in m/s +θp0 = [θ0, p0] # initial condition in phase space +t_final = 10000.0 # final time of simulation + +tspan = (0.0, t_final) # span of time to simulate + +prob = ODEProblem(tendency!, θp0, tspan, param) # specify ODE +sol = solve(prob, Tsit5(), reltol=1e-12, abstol=1e-12) # solve using Tsit5 algorithm to specified accuracy + +sample_times = sol.t +println("\n\t Results") +println("final time = ", sample_times[end]) +println("Initial energy = ", energy(sol[:,1], param)) +println("Final energy = ", energy(sol[:, end], param)) + +(ω0, β, f, ω) = param + +# Plot of position vs. time +θt = plot(sample_times, [sol[1, :], f * forcing.(sample_times, ω)], xlabel = "t", ylabel = "θ(t)", legend = false, title = "θ vs. t") + +# Phase space plot +θp = plot(sin.(sol[1, :]), sol[2, :], xlabel = "θ", ylabel = "p", legend = false, title = "phase space") + +plot(θt, θp)
\ No newline at end of file |