diff options
Diffstat (limited to 't/disp.jl')
-rw-r--r-- | t/disp.jl | 173 |
1 files changed, 173 insertions, 0 deletions
diff --git a/t/disp.jl b/t/disp.jl new file mode 100644 index 0000000..41ee2bb --- /dev/null +++ b/t/disp.jl @@ -0,0 +1,173 @@ +function calculate_force( + left_pos, + middle_pos, + right_pos, + K, + alpha = 0, + beta = 0, +) + linear_force = K * (middle_pos - left_pos + middle_pos - right_pos) + quadratic_force = alpha * (middle_pos - left_pos)^2 + alpha * (middle_pos - right_pos)^2 + cubic_force = beta * (middle_pos - left_pos)^3 + beta * (middle_pos - right_pos)^3 + return linear_force + quadratic_force + cubic_force +end + +function tendency!(du, u, p, t) + # unpack the params + N, K, m = p + + # get the positions and momenta + qs = u[1:2:end] + ps = u[2:2:end] + + # go over the points in the lattice and update the state + for i in 2:N-1 + mass = m + if i == 2 * Int(N / 2) - 1 || i == 2 * Int(N / 2) + mass = 10000 + end + + du[i*2-1] = ps[i] / mass + force = + du[i*2] = force / mass + end + + force_end = K * (qs[2] - 2 * qs[1] + qs[N-1]) + du[1] = ps[1] / m + du[2] = force_end / m + du[end-1] = ps[end] / m + du[end] = force_end / m +end + +function get_initial_state( + N, + initial_displacement = 2, + initial_velocity = 0, +) + state = zeros(2 * N) + + middle_index = 2 * Int(N / 2) - 1 # middle mass + state[middle_index] = initial_displacement + state[middle_index+1] = initial_velocity + return state +end + +using DifferentialEquations +function run_simulation( + N, + K, + m, + final_time, + initial_displacement = 2, + initial_velocity = 0, +) + println("Running simulation with N = $N, K = $K, m = $m, final_time = $final_time, initial_displacement = $initial_displacement, initial_velocity = $initial_velocity\n") + s_0 = get_initial_state(N, initial_displacement, initial_velocity) + + # pack the params + p = N, K, m + t_span = (0.0, final_time) + prob = ODEProblem(tendency!, s_0, t_span, p) + sol = solve(prob, Tsit5(), reltol = 1e-10, abstol = 1e-10) # control simulation + + println("Done Running Sim!\n\n") + return sol +end + +using Plots +function animate_positions( + states, + time_steps, + time_min = 0, + time_max = 30, + red_threshold = 2, +) + println("Animating positions") + anim = @animate for i in 1:length(time_steps) + t = time_steps[i] + if t < time_min + continue + end + if t > time_max + break + end + positions = states[i][1:2:end] + v_middle = states[i][Int(length(states[1]) / 2)] + # plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3)) + if v_middle >= red_threshold + plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3), + color = :red, legend = :topright, + ) + else + plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3), + color = :blue, legend = :topright, + ) + end + end + mp4(anim, "t/animate-positions.mp4", fps = 30) + println("Done animating positions") +end + +function plot_starting_and_final_positions( + states, + time_steps, +) + p1 = plot(states[1][1:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", title = "First Three Modes") + plot!(p1, states[end][1:2:end], label = "Final", marker = :circle) + + # plot the vels + p2 = plot(states[1][2:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Velocity", title = "First Three Modes") + plot!(p2, states[end][2:2:end], label = "Final", marker = :circle) + + # save the plots + savefig(p1, "t/initial-final-positions.png") + savefig(p2, "t/initial-final-velocities.png") +end + +function analyize_vels( + states, + time_steps, + threshold = 1.975, +) + println("Analyzing velocities:\n") + output = [] + for i in 1:length(states) + if states[i][Int(length(states[i]) / 2)] >= threshold + push!(output, i) + println("Time: ", time_steps[i], " Position: ", states[i][Int(length(states[i]) / 2)]) + end + end + + # plot the first 10 seconds of Velocity + data = [] + for i in 1:length(states) + if time_steps[i] > 10 + break + end + push!(data, states[i][Int(length(states[i]) / 2)]) + end + p = plot(data, label = "Velocity Over Time", xlabel = "Time", ylabel = "Velocity") + savefig(p, "t/velocity-over-time.png") + + println("\nDone!\n\n") + return output +end + +# Run the simulation +N = 10 # number of masses +beta = 0 # cubic string spring +K = 100 # spring constant +A = 10 # amplitude +final_time = 10000 # seconds +m = 1 # mass of particles +plot_data = [] + +my_vel = 10 + +sol = run_simulation(N, K, m, final_time, 0, my_vel) + +println("final time: ", sol.t[end]) +# s = sol.u[1:2:end] +analyize_vels(sol.u, sol.t, my_vel) +plot_starting_and_final_positions(sol.u, sol.t) +animate_positions(sol.u, sol.t, 0, 1, my_vel) |