aboutsummaryrefslogtreecommitdiff
path: root/t/old/disp.jl
diff options
context:
space:
mode:
Diffstat (limited to 't/old/disp.jl')
-rw-r--r--t/old/disp.jl272
1 files changed, 272 insertions, 0 deletions
diff --git a/t/old/disp.jl b/t/old/disp.jl
new file mode 100644
index 0000000..18e0a1b
--- /dev/null
+++ b/t/old/disp.jl
@@ -0,0 +1,272 @@
+M = 10
+m = 1 # mass of particles
+
+function calculate_force(
+ left_pos,
+ middle_pos,
+ right_pos,
+ K,
+ alpha = 0.0,
+ beta = 1000.0,
+)
+ linear_force = K * (left_pos + right_pos - 2 * middle_pos)
+ quadratic_force = alpha * (left_pos - middle_pos)^2 + alpha * (right_pos - middle_pos)^2
+ cubic_force = beta * (left_pos - middle_pos)^3 + beta * (right_pos - middle_pos)^3
+
+ return linear_force + quadratic_force + cubic_force
+end
+
+function tendency!(du, u, p, t)
+ # unpack the params
+ N, K, m = p
+
+ # get the positions and momenta
+ qs = u[1:2:end]
+ ps = u[2:2:end]
+
+ # go over the points in the lattice and update the state
+ for i in 1:N-1
+ mass = m
+ if i == Int(N / 2)
+ mass = M
+ end
+
+ left_index = max(1, i - 1)
+ right_index = min(N, i + 1)
+
+ du[i*2-1] = ps[i] / mass
+ force = calculate_force(qs[left_index], qs[i], qs[right_index], K)
+ du[i*2] = force / mass
+ end
+
+ # make last point same as first
+ du[N*2-1] = du[1] = 0 # set to 0
+ du[N*2] = du[2] = 0
+
+
+ if t % 100000 == 0
+ println("TIME UPDATE: ", t)
+ end
+
+ # if ps[Int(N / 2)] / M >= 1
+ # println("(in sim!) Time: ", t, " Vel: ", ps[Int(N / 2)] / M)
+ # # println("Other Positions: ", qs)
+ # println("Other Velocities: ", ps, "\n")
+ # end
+end
+
+function get_initial_state(
+ N,
+ initial_displacement = 2,
+ initial_velocity = 0,
+)
+ state = zeros(2 * N)
+
+ middle_index = 2 * Int(N / 2) - 1 # middle mass
+ state[middle_index] = initial_displacement
+ state[middle_index+1] = initial_velocity * M
+ return state
+end
+
+using DifferentialEquations
+function run_simulation(
+ N,
+ K,
+ m,
+ final_time,
+ initial_displacement = 2,
+ initial_velocity = 0,
+)
+ println("Running simulation with N = $N, K = $K, m = $m, final_time = $final_time, initial_displacement = $initial_displacement, initial_velocity = $initial_velocity\n")
+ s_0 = get_initial_state(N, initial_displacement, initial_velocity)
+
+ calculate_energy(s_0)
+
+ # pack the params
+ p = N, K, m
+ t_span = (0.0, final_time)
+ prob = ODEProblem(tendency!, s_0, t_span, p)
+ sol = solve(prob, Tsit5(), reltol = 1e-5, abstol = 1e-5, maxiters = 1e10) # control simulation
+
+ calculate_energy(sol.u[end])
+
+ println("Done Running Sim!\n\n")
+ return sol
+end
+
+using Plots
+function animate_positions(
+ states,
+ time_steps,
+ time_min = 0,
+ time_max = 30,
+ red_threshold = 2,
+ shift = true,
+)
+ println("Animating positions")
+ anim = @animate for i in 1:length(time_steps)
+ t = time_steps[i]
+ if t < time_min
+ continue
+ end
+ if t > time_max
+ break
+ end
+ positions = states[i][1:2:end]
+ v_middle = states[i][Int(length(states[1]) / 2)] / M
+ p_middle = states[i][Int(length(states[1]) / 2)-1]
+ y_lims = shift ? (-3 + p_middle, 3 + p_middle) : (-3, 3)
+ # plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3))
+ if v_middle >= red_threshold
+ plot(positions, label = "t = $(round(t, digits = 7)), v_middle=$(round(v_middle, digits=7))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = y_lims,
+ color = :red, legend = :topright,
+ )
+ else
+ plot(positions, label = "t = $(round(t, digits = 7)), v_middle=$(round(v_middle, digits=7))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = y_lims,
+ color = :blue, legend = :topright,
+ )
+ end
+ end
+ mp4(anim, "t/animate-positions.mp4", fps = 30)
+ println("Done animating positions")
+end
+
+function plot_starting_and_final_positions(
+ states,
+ time_steps,
+)
+ # plot the positions
+ middle_index = Int(length(states[1]) / 2) - 1
+ pos_init = [x - states[1][middle_index] for x in states[1][1:2:end]]
+ pos_final = [x - states[end][middle_index] for x in states[end][1:2:end]]
+ p1 = plot(pos_init, label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", title = "Positions Over Time")
+ plot!(p1, pos_final, label = "Final", marker = :circle)
+
+ # plot the vels
+ vels_init = [x / M for x in states[1][2:2:end]]
+ vels_final = [x / M for x in states[end][2:2:end]]
+ p2 = plot(states[1][2:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Velocity", title = "Velocities Over Time")
+ plot!(p2, states[end][2:2:end], label = "Final t = $(time_steps[end])", marker = :circle)
+
+ # save the plots
+ savefig(p1, "t/initial-final-positions.png")
+ savefig(p2, "t/initial-final-velocities.png")
+end
+
+function analyize_vels(
+ states,
+ time_steps,
+ threshold = 1.975,
+)
+ println("Analyzing velocities:\n")
+ output = []
+ for i in 1:length(states)
+ v = states[i][Int(length(states[i]) / 2)] / M
+ if v >= threshold - 10e-6
+ push!(output, i)
+ println("Time: ", time_steps[i], " Vel: ", v)
+ end
+ end
+
+ data = []
+ for i in 1:length(states)
+ push!(data, states[i][Int(length(states[i]) / 2)])
+ end
+ p = plot(data, label = "Velocity Over Time", xlabel = "Time", ylabel = "Velocity")
+ savefig(p, "t/velocity-over-time.png")
+
+ println("\nDone!\n\n")
+ return output
+end
+
+function analyize_pos(
+ states,
+ time_steps,
+ threshold = 1.975,
+)
+ println("Analyzing positions:\n")
+ output = []
+ for i in 1:length(states)
+ if states[i][Int(length(states[i]) / 2)-1] >= threshold
+ push!(output, i)
+ println("Time: ", time_steps[i], " Position: ", states[i][Int(length(states[i]) / 2)])
+ end
+ end
+
+ # plot the first 10 seconds of Velocity
+ data = []
+ for i in 1:length(states)
+ if time_steps[i] > 10
+ break
+ end
+ push!(data, states[i][Int(length(states[i]) / 2)] - 1)
+ end
+ p = plot(data, label = "Position Over Time", xlabel = "Time", ylabel = "Position")
+ savefig(p, "t/pos-over-time.png")
+
+ println("\nDone!\n\n")
+ return output
+end
+
+function calculate_energy(state)
+ # calculate the kinetic energy
+ kinetic_energy = 0
+ vels = state[2:2:end]
+ for i in 1:N
+ mass = i == Int(N / 2) - 1 ? M : m
+ # calculate the kinetic energy
+ kinetic_energy += 0.5 * vels[i] * vels[i] / mass
+ end
+
+ # calcaute the potential energy
+ potential_energy = 0
+ pos = state[1:2:end]
+ for i in 1:N-1
+ left_index = max(1, i - 1)
+ right_index = min(N, i + 1)
+ potential_energy += 0.5 * K * (pos[left_index] - pos[i])^2
+ potential_energy += 0.5 * K * (pos[right_index] - pos[i])^2
+ end
+
+ # print the energy
+ println("Kinetic Energy: ", kinetic_energy)
+ println("Potential Energy: ", potential_energy)
+ println("Total Energy: ", kinetic_energy + potential_energy, "\n")
+end
+
+function plot_middle_mass_phase_space(states)
+ # get the index of the middle mass
+ middle_index = Int(length(states[1]) / 2) - 1
+ # build an array of the pos and vel over time
+ pos = []
+ vel = []
+ for i in 1:length(states)
+ push!(pos, states[i][middle_index])
+ push!(vel, states[i][middle_index+1])
+ end
+
+ # plot the phase space
+ p = plot(pos, vel, xlabel = "Position", ylabel = "Momentum", title = "Phase Space of Middle Mass in FPU", label = "Beta = 10, K = 1, N = 64, M = $M")
+
+ # save the plot
+ savefig(p, "t/phase-space.png")
+end
+
+
+# Run the simulation
+N = 64 # number of masses
+K = 1 # spring constant
+final_time = 1000 # seconds
+plot_data = []
+
+my_vel = 100
+
+sol = run_simulation(N, K, m, final_time, 0, my_vel)
+
+println("final time: ", sol.t[end])
+# s = sol.u[1:2:end]
+# analyize_vels(sol.u, sol.t, my_vel)
+# analyize_pos(sol.u, sol.t, 1.4)
+plot_starting_and_final_positions(sol.u, sol.t)
+# animate_positions(sol.u, sol.t, 0, 100, my_vel) # expect 80913.35854226245 for k=10?? rip
+plot_middle_mass_phase_space(sol.u)