M = 10 m = 1 # mass of particles function calculate_force( left_pos, middle_pos, right_pos, K, alpha = 0.0, beta = 1000.0, ) linear_force = K * (left_pos + right_pos - 2 * middle_pos) quadratic_force = alpha * (left_pos - middle_pos)^2 + alpha * (right_pos - middle_pos)^2 cubic_force = beta * (left_pos - middle_pos)^3 + beta * (right_pos - middle_pos)^3 return linear_force + quadratic_force + cubic_force end function tendency!(du, u, p, t) # unpack the params N, K, m = p # get the positions and momenta qs = u[1:2:end] ps = u[2:2:end] # go over the points in the lattice and update the state for i in 1:N-1 mass = m if i == Int(N / 2) mass = M end left_index = max(1, i - 1) right_index = min(N, i + 1) du[i*2-1] = ps[i] / mass force = calculate_force(qs[left_index], qs[i], qs[right_index], K) du[i*2] = force / mass end # make last point same as first du[N*2-1] = du[1] = 0 # set to 0 du[N*2] = du[2] = 0 if t % 100000 == 0 println("TIME UPDATE: ", t) end # if ps[Int(N / 2)] / M >= 1 # println("(in sim!) Time: ", t, " Vel: ", ps[Int(N / 2)] / M) # # println("Other Positions: ", qs) # println("Other Velocities: ", ps, "\n") # end end function get_initial_state( N, initial_displacement = 2, initial_velocity = 0, ) state = zeros(2 * N) middle_index = 2 * Int(N / 2) - 1 # middle mass state[middle_index] = initial_displacement state[middle_index+1] = initial_velocity * M return state end using DifferentialEquations function run_simulation( N, K, m, final_time, initial_displacement = 2, initial_velocity = 0, ) println("Running simulation with N = $N, K = $K, m = $m, final_time = $final_time, initial_displacement = $initial_displacement, initial_velocity = $initial_velocity\n") s_0 = get_initial_state(N, initial_displacement, initial_velocity) calculate_energy(s_0) # pack the params p = N, K, m t_span = (0.0, final_time) prob = ODEProblem(tendency!, s_0, t_span, p) sol = solve(prob, Tsit5(), reltol = 1e-5, abstol = 1e-5, maxiters = 1e10) # control simulation calculate_energy(sol.u[end]) println("Done Running Sim!\n\n") return sol end using Plots function animate_positions( states, time_steps, time_min = 0, time_max = 30, red_threshold = 2, shift = true, ) println("Animating positions") anim = @animate for i in 1:length(time_steps) t = time_steps[i] if t < time_min continue end if t > time_max break end positions = states[i][1:2:end] v_middle = states[i][Int(length(states[1]) / 2)] / M p_middle = states[i][Int(length(states[1]) / 2)-1] y_lims = shift ? (-3 + p_middle, 3 + p_middle) : (-3, 3) # plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3)) if v_middle >= red_threshold plot(positions, label = "t = $(round(t, digits = 7)), v_middle=$(round(v_middle, digits=7))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = y_lims, color = :red, legend = :topright, ) else plot(positions, label = "t = $(round(t, digits = 7)), v_middle=$(round(v_middle, digits=7))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = y_lims, color = :blue, legend = :topright, ) end end mp4(anim, "t/animate-positions.mp4", fps = 30) println("Done animating positions") end function plot_starting_and_final_positions( states, time_steps, ) # plot the positions middle_index = Int(length(states[1]) / 2) - 1 pos_init = [x - states[1][middle_index] for x in states[1][1:2:end]] pos_final = [x - states[end][middle_index] for x in states[end][1:2:end]] p1 = plot(pos_init, label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", title = "Positions Over Time") plot!(p1, pos_final, label = "Final", marker = :circle) # plot the vels vels_init = [x / M for x in states[1][2:2:end]] vels_final = [x / M for x in states[end][2:2:end]] p2 = plot(states[1][2:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Velocity", title = "Velocities Over Time") plot!(p2, states[end][2:2:end], label = "Final t = $(time_steps[end])", marker = :circle) # save the plots savefig(p1, "t/initial-final-positions.png") savefig(p2, "t/initial-final-velocities.png") end function analyize_vels( states, time_steps, threshold = 1.975, ) println("Analyzing velocities:\n") output = [] for i in 1:length(states) v = states[i][Int(length(states[i]) / 2)] / M if v >= threshold - 10e-6 push!(output, i) println("Time: ", time_steps[i], " Vel: ", v) end end data = [] for i in 1:length(states) push!(data, states[i][Int(length(states[i]) / 2)]) end p = plot(data, label = "Velocity Over Time", xlabel = "Time", ylabel = "Velocity") savefig(p, "t/velocity-over-time.png") println("\nDone!\n\n") return output end function analyize_pos( states, time_steps, threshold = 1.975, ) println("Analyzing positions:\n") output = [] for i in 1:length(states) if states[i][Int(length(states[i]) / 2)-1] >= threshold push!(output, i) println("Time: ", time_steps[i], " Position: ", states[i][Int(length(states[i]) / 2)]) end end # plot the first 10 seconds of Velocity data = [] for i in 1:length(states) if time_steps[i] > 10 break end push!(data, states[i][Int(length(states[i]) / 2)] - 1) end p = plot(data, label = "Position Over Time", xlabel = "Time", ylabel = "Position") savefig(p, "t/pos-over-time.png") println("\nDone!\n\n") return output end function calculate_energy(state) # calculate the kinetic energy kinetic_energy = 0 vels = state[2:2:end] for i in 1:N mass = i == Int(N / 2) - 1 ? M : m # calculate the kinetic energy kinetic_energy += 0.5 * vels[i] * vels[i] / mass end # calcaute the potential energy potential_energy = 0 pos = state[1:2:end] for i in 1:N-1 left_index = max(1, i - 1) right_index = min(N, i + 1) potential_energy += 0.5 * K * (pos[left_index] - pos[i])^2 potential_energy += 0.5 * K * (pos[right_index] - pos[i])^2 end # print the energy println("Kinetic Energy: ", kinetic_energy) println("Potential Energy: ", potential_energy) println("Total Energy: ", kinetic_energy + potential_energy, "\n") end function plot_middle_mass_phase_space(states) # get the index of the middle mass middle_index = Int(length(states[1]) / 2) - 1 # build an array of the pos and vel over time pos = [] vel = [] for i in 1:length(states) push!(pos, states[i][middle_index]) push!(vel, states[i][middle_index+1]) end # plot the phase space p = plot(pos, vel, xlabel = "Position", ylabel = "Momentum", title = "Phase Space of Middle Mass in FPU", label = "Beta = 10, K = 1, N = 64, M = $M") # save the plot savefig(p, "t/phase-space.png") end # Run the simulation N = 64 # number of masses K = 1 # spring constant final_time = 1000 # seconds plot_data = [] my_vel = 100 sol = run_simulation(N, K, m, final_time, 0, my_vel) println("final time: ", sol.t[end]) # s = sol.u[1:2:end] # analyize_vels(sol.u, sol.t, my_vel) # analyize_pos(sol.u, sol.t, 1.4) plot_starting_and_final_positions(sol.u, sol.t) # animate_positions(sol.u, sol.t, 0, 100, my_vel) # expect 80913.35854226245 for k=10?? rip plot_middle_mass_phase_space(sol.u)