using Plots # for plotting trajectory # simulation parameters Δt = 0.001 # time step x_max = 60.0 # in feet v_0 = 95.0 # mph v_0 = v_0 * 5280 / 3600 # convert mph to feet/s y_0 = 6.0 # in feet ω = 0.0 # in rad/s m = 149 # in grams S_0_over_m = 4.1 * 10^(-4) # unitless B_ref_over_m = 4.0 * 10^(-5) # in m-1, at 300K g = 32.2 # in ft/s^2 function dynamics!( x::Vector{Float64}, y::Vector{Float64}, v_y::Vector{Float64}, v_x::Vector{Float64}, t::Vector{Float64}) while x[end] <= x_max # decompose previous positions and velocities x_i = x[end] y_i = y[end] v_x_i = v_x[end] v_y_i = v_y[end] # calculate new positions x_new = x_i + v_x_i * Δt y_new = y_i + v_y_i * Δt # calculate drag force v_i = sqrt(v_x_i^2 + v_y_i^2) F_x = - B_ref_over_m * v_x_i * v_i F_y = - g + S_0_over_m * v_x_i * ω # calculate new velocities v_x_new = v_x_i + F_x * Δt v_y_new = v_y_i + F_y * Δt # store new positions and velocities push!(x, x_new) push!(y, y_new) push!(v_x, v_x_new) push!(v_y, v_y_new) push!(t, t[end] + Δt) end end # interpolate the last point that's past the x_max function interpolate!(x::Vector{Float64}, y::Vector{Float64}) if x[end] <= x_max return end x_i = x[end-1] y_i = y[end-1] x_f = x[end] y_f = y[end] m = (y_f - y_i) / (x_f - x_i) b = y_i - m * x_i x_new = x_max y_new = m * x_new + b x[end] = x_new y[end] = y_new end # run the simulation with ω = 0 x = [0.0] y = [y_0] v_x = [v_0] # pitch only in x direction v_y = [0.0] t = [0.0] dynamics!(x, y, v_y, v_x, t) interpolate!(x, y) plot(x, y, label="ω = 0", xlabel="x (feet)", ylabel="y (feet)", lw=2, title="Trajectory of a Fastball with Backspin") println("y-value at x_max (60ft) for ω = 0:\t", y[end], " feet") # run the simulation with ω = 1000 rpm ω = 1000 * 2 * π / 60 # convert rpm to rad/s x = [0.0] y = [y_0] v_x = [v_0] # pitch only in x direction v_y = [0.0] t = [0.0] dynamics!(x, y, v_y, v_x, t) interpolate!(x, y) println("y-value at x_max (60ft) for ω = 1000 rpm:\t", y[end], " feet") plot!(x, y, label="ω = 1000 rpm", lw=2)