#!/Applications/Julia-1.8.app/Contents/Resources/julia/bin/julia # Simulate driven pendulum to find chaotic regime using Plots # for plotting trajectory using DifferentialEquations # for solving ODEs ω0 = 1.0 # ω0^2 = g/l β = 0.0001 # β = friction f = 0.5 # forcing amplitude ω = 1.01 # forcing frequency param = (ω0, β, f, ω) # parameters of anharmonic oscillator function tendency!(dθp::Vector{Float64}, θp::Vector{Float64}, param, t::Float64) (θ, p) = θp # 2d phase space (ω0, β, f, ω) = param a = -ω0^2 * sin(θ) - β * p + f * forcing(t, ω) # acceleration with m = 1 dθp[1] = p dθp[2] = a end function forcing(t::Float64, ω::Float64) return cos(ω * t) end function energy(θp::Vector{Float64}, param) (θ, p) = θp (ω0, β, f, ω) = param pe = ω0^2 * (1.0 - cos(θ)) ke = 0.5 * p^2 return pe + ke end θ0 = 0.0 # initial position in meters p0 = 0.0 # initial velocity in m/s θp0 = [θ0, p0] # initial condition in phase space t_final = 10000.0 # final time of simulation tspan = (0.0, t_final) # span of time to simulate prob = ODEProblem(tendency!, θp0, tspan, param) # specify ODE sol = solve(prob, Tsit5(), reltol=1e-12, abstol=1e-12) # solve using Tsit5 algorithm to specified accuracy sample_times = sol.t println("\n\t Results") println("final time = ", sample_times[end]) println("Initial energy = ", energy(sol[:,1], param)) println("Final energy = ", energy(sol[:, end], param)) (ω0, β, f, ω) = param # Plot of position vs. time θt = plot(sample_times, [sol[1, :], f * forcing.(sample_times, ω)], xlabel = "t", ylabel = "θ(t)", legend = false, title = "θ vs. t") # Phase space plot θp = plot(sin.(sol[1, :]), sol[2, :], xlabel = "θ", ylabel = "p", legend = false, title = "phase space") plot(θt, θp)