from __future__ import annotations
import math
from typing import TYPE_CHECKING, Any, Callable, Iterable, Mapping, Sequence
from narwhals._expression_parsing import (
ExprMetadata,
apply_n_ary_operation,
combine_metadata,
extract_compliant,
)
from narwhals._utils import (
_validate_rolling_arguments,
ensure_type,
flatten,
issue_deprecation_warning,
)
from narwhals.dtypes import _validate_dtype
from narwhals.exceptions import InvalidOperationError
from narwhals.expr_cat import ExprCatNamespace
from narwhals.expr_dt import ExprDateTimeNamespace
from narwhals.expr_list import ExprListNamespace
from narwhals.expr_name import ExprNameNamespace
from narwhals.expr_str import ExprStringNamespace
from narwhals.expr_struct import ExprStructNamespace
from narwhals.translate import to_native
if TYPE_CHECKING:
from typing import TypeVar
from typing_extensions import Concatenate, ParamSpec, Self, TypeAlias
from narwhals._compliant import CompliantExpr, CompliantNamespace
from narwhals.dtypes import DType
from narwhals.typing import (
ClosedInterval,
FillNullStrategy,
IntoDType,
IntoExpr,
NonNestedLiteral,
NumericLiteral,
RankMethod,
RollingInterpolationMethod,
TemporalLiteral,
)
PS = ParamSpec("PS")
R = TypeVar("R")
_ToCompliant: TypeAlias = Callable[
[CompliantNamespace[Any, Any]], CompliantExpr[Any, Any]
]
class Expr:
def __init__(self, to_compliant_expr: _ToCompliant, metadata: ExprMetadata) -> None:
# callable from CompliantNamespace to CompliantExpr
def func(plx: CompliantNamespace[Any, Any]) -> CompliantExpr[Any, Any]:
result = to_compliant_expr(plx)
result._metadata = self._metadata
return result
self._to_compliant_expr: _ToCompliant = func
self._metadata = metadata
def _with_elementwise_op(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(to_compliant_expr, self._metadata.with_elementwise_op())
def _with_aggregation(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(to_compliant_expr, self._metadata.with_aggregation())
def _with_orderable_aggregation(
self, to_compliant_expr: Callable[[Any], Any]
) -> Self:
return self.__class__(
to_compliant_expr, self._metadata.with_orderable_aggregation()
)
def _with_orderable_window(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(to_compliant_expr, self._metadata.with_orderable_window())
def _with_unorderable_window(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(to_compliant_expr, self._metadata.with_unorderable_window())
def _with_filtration(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(to_compliant_expr, self._metadata.with_filtration())
def _with_orderable_filtration(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(
to_compliant_expr, self._metadata.with_orderable_filtration()
)
def __repr__(self) -> str:
return f"Narwhals Expr\nmetadata: {self._metadata}\n"
def _taxicab_norm(self) -> Self:
# This is just used to test out the stable api feature in a realistic-ish way.
# It's not intended to be used.
return self._with_aggregation(
lambda plx: self._to_compliant_expr(plx).abs().sum()
)
# --- convert ---
def alias(self, name: str) -> Self:
"""Rename the expression.
Arguments:
name: The new name.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2], "b": [4, 5]})
>>> df = nw.from_native(df_native)
>>> df.select((nw.col("b") + 10).alias("c"))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| c |
| 0 14 |
| 1 15 |
└──────────────────┘
"""
# Don't use `_with_elementwise_op` so that `_metadata.last_node` is preserved.
return self.__class__(
lambda plx: self._to_compliant_expr(plx).alias(name), self._metadata
)
def pipe(
self,
function: Callable[Concatenate[Self, PS], R],
*args: PS.args,
**kwargs: PS.kwargs,
) -> R:
"""Pipe function call.
Arguments:
function: Function to apply.
args: Positional arguments to pass to function.
kwargs: Keyword arguments to pass to function.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 4]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_piped=nw.col("a").pipe(lambda x: x + 1))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a a_piped |
| 0 1 2 |
| 1 2 3 |
| 2 3 4 |
| 3 4 5 |
└──────────────────┘
"""
return function(self, *args, **kwargs)
def cast(self, dtype: IntoDType) -> Self:
"""Redefine an object's data type.
Arguments:
dtype: Data type that the object will be cast into.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"foo": [1, 2, 3], "bar": [6.0, 7.0, 8.0]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("foo").cast(nw.Float32), nw.col("bar").cast(nw.UInt8))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| foo bar |
| 0 1.0 6 |
| 1 2.0 7 |
| 2 3.0 8 |
└──────────────────┘
"""
_validate_dtype(dtype)
return self._with_elementwise_op(
lambda plx: self._to_compliant_expr(plx).cast(dtype)
)
# --- binary ---
def __eq__(self, other: Self | Any) -> Self: # type: ignore[override]
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x == y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __ne__(self, other: Self | Any) -> Self: # type: ignore[override]
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x != y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __and__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x & y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rand__(self, other: Any) -> Self:
return (self & other).alias("literal") # type: ignore[no-any-return]
def __or__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x | y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __ror__(self, other: Any) -> Self:
return (self | other).alias("literal") # type: ignore[no-any-return]
def __add__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x + y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __radd__(self, other: Any) -> Self:
return (self + other).alias("literal") # type: ignore[no-any-return]
def __sub__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x - y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rsub__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x.__rsub__(y), self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __truediv__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x / y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rtruediv__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x.__rtruediv__(y), self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __mul__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x * y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rmul__(self, other: Any) -> Self:
return (self * other).alias("literal") # type: ignore[no-any-return]
def __le__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x <= y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __lt__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x < y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __gt__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x > y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __ge__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x >= y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __pow__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x**y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rpow__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x.__rpow__(y), self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __floordiv__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x // y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rfloordiv__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x.__rfloordiv__(y), self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __mod__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x % y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rmod__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x.__rmod__(y), self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
# --- unary ---
def __invert__(self) -> Self:
return self._with_elementwise_op(
lambda plx: self._to_compliant_expr(plx).__invert__()
)
def any(self) -> Self:
"""Return whether any of the values in the column are `True`.
If there are no non-null elements, the result is `False`.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [True, False], "b": [True, True]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").any())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 True True |
└──────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).any())
def all(self) -> Self:
"""Return whether all values in the column are `True`.
If there are no non-null elements, the result is `True`.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [True, False], "b": [True, True]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").all())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 False True |
└──────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).all())
def ewm_mean(
self,
*,
com: float | None = None,
span: float | None = None,
half_life: float | None = None,
alpha: float | None = None,
adjust: bool = True,
min_samples: int = 1,
ignore_nulls: bool = False,
) -> Self:
r"""Compute exponentially-weighted moving average.
Arguments:
com: Specify decay in terms of center of mass, $\gamma$, with
$\alpha = \frac{1}{1+\gamma}\forall\gamma\geq0$
span: Specify decay in terms of span, $\theta$, with
$\alpha = \frac{2}{\theta + 1} \forall \theta \geq 1$
half_life: Specify decay in terms of half-life, $\tau$, with
$\alpha = 1 - \exp \left\{ \frac{ -\ln(2) }{ \tau } \right\} \forall \tau > 0$
alpha: Specify smoothing factor alpha directly, $0 < \alpha \leq 1$.
adjust: Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings
- When `adjust=True` (the default) the EW function is calculated
using weights $w_i = (1 - \alpha)^i$
- When `adjust=False` the EW function is calculated recursively by
$$
y_0=x_0
$$
$$
y_t = (1 - \alpha)y_{t - 1} + \alpha x_t
$$
min_samples: Minimum number of observations in window required to have a value, (otherwise result is null).
ignore_nulls: Ignore missing values when calculating weights.
- When `ignore_nulls=False` (default), weights are based on absolute
positions.
For example, the weights of $x_0$ and $x_2$ used in
calculating the final weighted average of $[x_0, None, x_2]$ are
$(1-\alpha)^2$ and $1$ if `adjust=True`, and
$(1-\alpha)^2$ and $\alpha$ if `adjust=False`.
- When `ignore_nulls=True`, weights are based
on relative positions. For example, the weights of
$x_0$ and $x_2$ used in calculating the final weighted
average of $[x_0, None, x_2]$ are
$1-\alpha$ and $1$ if `adjust=True`,
and $1-\alpha$ and $\alpha$ if `adjust=False`.
Returns:
Expr
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"a": [1, 2, 3]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a library agnostic function:
>>> def agnostic_ewm_mean(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.select(
... nw.col("a").ewm_mean(com=1, ignore_nulls=False)
... ).to_native()
We can then pass either pandas or Polars to `agnostic_ewm_mean`:
>>> agnostic_ewm_mean(df_pd)
a
0 1.000000
1 1.666667
2 2.428571
>>> agnostic_ewm_mean(df_pl) # doctest: +NORMALIZE_WHITESPACE
shape: (3, 1)
┌──────────┐
│ a │
│ --- │
│ f64 │
╞══════════╡
│ 1.0 │
│ 1.666667 │
│ 2.428571 │
└──────────┘
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).ewm_mean(
com=com,
span=span,
half_life=half_life,
alpha=alpha,
adjust=adjust,
min_samples=min_samples,
ignore_nulls=ignore_nulls,
)
)
def mean(self) -> Self:
"""Get mean value.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [-1, 0, 1], "b": [2, 4, 6]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").mean())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 0.0 4.0 |
└──────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).mean())
def median(self) -> Self:
"""Get median value.
Returns:
A new expression.
Notes:
Results might slightly differ across backends due to differences in the underlying algorithms used to compute the median.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 8, 3], "b": [4, 5, 2]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").median())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 3.0 4.0 |
└──────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).median())
def std(self, *, ddof: int = 1) -> Self:
"""Get standard deviation.
Arguments:
ddof: "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof,
where N represents the number of elements. By default ddof is 1.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [20, 25, 60], "b": [1.5, 1, -1.4]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").std(ddof=0))
┌─────────────────────┐
| Narwhals DataFrame |
|---------------------|
| a b|
|0 17.79513 1.265789|
└─────────────────────┘
"""
return self._with_aggregation(
lambda plx: self._to_compliant_expr(plx).std(ddof=ddof)
)
def var(self, *, ddof: int = 1) -> Self:
"""Get variance.
Arguments:
ddof: "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof,
where N represents the number of elements. By default ddof is 1.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [20, 25, 60], "b": [1.5, 1, -1.4]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").var(ddof=0))
┌───────────────────────┐
| Narwhals DataFrame |
|-----------------------|
| a b|
|0 316.666667 1.602222|
└───────────────────────┘
"""
return self._with_aggregation(
lambda plx: self._to_compliant_expr(plx).var(ddof=ddof)
)
def map_batches(
self,
function: Callable[[Any], CompliantExpr[Any, Any]],
return_dtype: DType | None = None,
) -> Self:
"""Apply a custom python function to a whole Series or sequence of Series.
The output of this custom function is presumed to be either a Series,
or a NumPy array (in which case it will be automatically converted into
a Series).
Arguments:
function: Function to apply to Series.
return_dtype: Dtype of the output Series.
If not set, the dtype will be inferred based on the first non-null value
that is returned by the function.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a", "b")
... .map_batches(lambda s: s.to_numpy() + 1, return_dtype=nw.Float64)
... .name.suffix("_mapped")
... )
┌───────────────────────────┐
| Narwhals DataFrame |
|---------------------------|
| a b a_mapped b_mapped|
|0 1 4 2.0 5.0|
|1 2 5 3.0 6.0|
|2 3 6 4.0 7.0|
└───────────────────────────┘
"""
# safest assumptions
return self._with_orderable_filtration(
lambda plx: self._to_compliant_expr(plx).map_batches(
function=function, return_dtype=return_dtype
)
)
def skew(self) -> Self:
"""Calculate the sample skewness of a column.
Returns:
An expression representing the sample skewness of the column.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 1, 2, 10, 100]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").skew())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 0.0 1.472427 |
└──────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).skew())
def sum(self) -> Expr:
"""Return the sum value.
If there are no non-null elements, the result is zero.
Returns:
A new expression.
Examples:
>>> import duckdb
>>> import narwhals as nw
>>> df_native = duckdb.sql("SELECT * FROM VALUES (5, 50), (10, 100) df(a, b)")
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").sum())
┌───────────────────┐
|Narwhals LazyFrame |
|-------------------|
|┌────────┬────────┐|
|│ a │ b │|
|│ int128 │ int128 │|
|├────────┼────────┤|
|│ 15 │ 150 │|
|└────────┴────────┘|
└───────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).sum())
def min(self) -> Self:
"""Returns the minimum value(s) from a column(s).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2], "b": [4, 3]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.min("a", "b"))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 1 3 |
└──────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).min())
def max(self) -> Self:
"""Returns the maximum value(s) from a column(s).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [10, 20], "b": [50, 100]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.max("a", "b"))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 20 100 |
└──────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).max())
def arg_min(self) -> Self:
"""Returns the index of the minimum value.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [10, 20], "b": [150, 100]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").arg_min().name.suffix("_arg_min"))
┌───────────────────────┐
| Narwhals DataFrame |
|-----------------------|
| a_arg_min b_arg_min|
|0 0 1|
└───────────────────────┘
"""
return self._with_orderable_aggregation(
lambda plx: self._to_compliant_expr(plx).arg_min()
)
def arg_max(self) -> Self:
"""Returns the index of the maximum value.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [10, 20], "b": [150, 100]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").arg_max().name.suffix("_arg_max"))
┌───────────────────────┐
| Narwhals DataFrame |
|-----------------------|
| a_arg_max b_arg_max|
|0 1 0|
└───────────────────────┘
"""
return self._with_orderable_aggregation(
lambda plx: self._to_compliant_expr(plx).arg_max()
)
def count(self) -> Self:
"""Returns the number of non-null elements in the column.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3], "b": [None, 4, 4]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.all().count())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 3 2 |
└──────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).count())
def n_unique(self) -> Self:
"""Returns count of unique values.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 1, 3, 3, 5]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").n_unique())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 5 3 |
└──────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).n_unique())
def unique(self) -> Self:
"""Return unique values of this expression.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 1, 3, 5, 5], "b": [2, 4, 4, 6, 6]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").unique().sum())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 9 12 |
└──────────────────┘
"""
return self._with_filtration(lambda plx: self._to_compliant_expr(plx).unique())
def abs(self) -> Self:
"""Return absolute value of each element.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, -2], "b": [-3, 4]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.col("a", "b").abs().name.suffix("_abs"))
┌─────────────────────┐
| Narwhals DataFrame |
|---------------------|
| a b a_abs b_abs|
|0 1 -3 1 3|
|1 -2 4 2 4|
└─────────────────────┘
"""
return self._with_elementwise_op(lambda plx: self._to_compliant_expr(plx).abs())
def cum_sum(self, *, reverse: bool = False) -> Self:
"""Return cumulative sum.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
reverse: reverse the operation
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 1, 3, 5, 5], "b": [2, 4, 4, 6, 6]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_cum_sum=nw.col("a").cum_sum())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b a_cum_sum|
|0 1 2 1|
|1 1 4 2|
|2 3 4 5|
|3 5 6 10|
|4 5 6 15|
└──────────────────┘
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).cum_sum(reverse=reverse)
)
def diff(self) -> Self:
"""Returns the difference between each element and the previous one.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Returns:
A new expression.
Notes:
pandas may change the dtype here, for example when introducing missing
values in an integer column. To ensure, that the dtype doesn't change,
you may want to use `fill_null` and `cast`. For example, to calculate
the diff and fill missing values with `0` in a Int64 column, you could
do:
nw.col("a").diff().fill_null(0).cast(nw.Int64)
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [1, 1, 3, 5, 5]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_diff=nw.col("a").diff())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| shape: (5, 2) |
| ┌─────┬────────┐ |
| │ a ┆ a_diff │ |
| │ --- ┆ --- │ |
| │ i64 ┆ i64 │ |
| ╞═════╪════════╡ |
| │ 1 ┆ null │ |
| │ 1 ┆ 0 │ |
| │ 3 ┆ 2 │ |
| │ 5 ┆ 2 │ |
| │ 5 ┆ 0 │ |
| └─────┴────────┘ |
└──────────────────┘
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).diff()
)
def shift(self, n: int) -> Self:
"""Shift values by `n` positions.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
n: Number of positions to shift values by.
Returns:
A new expression.
Notes:
pandas may change the dtype here, for example when introducing missing
values in an integer column. To ensure, that the dtype doesn't change,
you may want to use `fill_null` and `cast`. For example, to shift
and fill missing values with `0` in a Int64 column, you could
do:
nw.col("a").shift(1).fill_null(0).cast(nw.Int64)
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [1, 1, 3, 5, 5]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_shift=nw.col("a").shift(n=1))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
|shape: (5, 2) |
|┌─────┬─────────┐ |
|│ a ┆ a_shift │ |
|│ --- ┆ --- │ |
|│ i64 ┆ i64 │ |
|╞═════╪═════════╡ |
|│ 1 ┆ null │ |
|│ 1 ┆ 1 │ |
|│ 3 ┆ 1 │ |
|│ 5 ┆ 3 │ |
|│ 5 ┆ 5 │ |
|└─────┴─────────┘ |
└──────────────────┘
"""
ensure_type(n, int, param_name="n")
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).shift(n)
)
def replace_strict(
self,
old: Sequence[Any] | Mapping[Any, Any],
new: Sequence[Any] | None = None,
*,
return_dtype: IntoDType | None = None,
) -> Self:
"""Replace all values by different values.
This function must replace all non-null input values (else it raises an error).
Arguments:
old: Sequence of values to replace. It also accepts a mapping of values to
their replacement as syntactic sugar for
`replace_strict(old=list(mapping.keys()), new=list(mapping.values()))`.
new: Sequence of values to replace by. Length must match the length of `old`.
return_dtype: The data type of the resulting expression. If set to `None`
(default), the data type is determined automatically based on the other
inputs.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [3, 0, 1, 2]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... b=nw.col("a").replace_strict(
... [0, 1, 2, 3],
... ["zero", "one", "two", "three"],
... return_dtype=nw.String,
... )
... )
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 3 three |
| 1 0 zero |
| 2 1 one |
| 3 2 two |
└──────────────────┘
"""
if new is None:
if not isinstance(old, Mapping):
msg = "`new` argument is required if `old` argument is not a Mapping type"
raise TypeError(msg)
new = list(old.values())
old = list(old.keys())
return self._with_elementwise_op(
lambda plx: self._to_compliant_expr(plx).replace_strict(
old, new, return_dtype=return_dtype
)
)
def sort(self, *, descending: bool = False, nulls_last: bool = False) -> Self:
"""Sort this column. Place null values first.
Warning:
`Expr.sort` is deprecated and will be removed in a future version.
Hint: instead of `df.select(nw.col('a').sort())`, use
`df.select(nw.col('a')).sort()` instead.
Note: this will remain available in `narwhals.stable.v1`.
See [stable api](../backcompat.md/) for more information.
Arguments:
descending: Sort in descending order.
nulls_last: Place null values last instead of first.
Returns:
A new expression.
"""
msg = (
"`Expr.sort` is deprecated and will be removed in a future version.\n\n"
"Hint: instead of `df.select(nw.col('a').sort())`, use `df.select(nw.col('a')).sort()`.\n\n"
"Note: this will remain available in `narwhals.stable.v1`.\n"
"See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
)
issue_deprecation_warning(msg, _version="1.23.0")
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).sort(
descending=descending, nulls_last=nulls_last
)
)
# --- transform ---
def is_between(
self,
lower_bound: Any | IntoExpr,
upper_bound: Any | IntoExpr,
closed: ClosedInterval = "both",
) -> Self:
"""Check if this expression is between the given lower and upper bounds.
Arguments:
lower_bound: Lower bound value. String literals are interpreted as column names.
upper_bound: Upper bound value. String literals are interpreted as column names.
closed: Define which sides of the interval are closed (inclusive).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 4, 5]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(b=nw.col("a").is_between(2, 4, "right"))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 1 False |
| 1 2 False |
| 2 3 True |
| 3 4 True |
| 4 5 False |
└──────────────────┘
"""
def func(
compliant_expr: CompliantExpr[Any, Any],
lb: CompliantExpr[Any, Any],
ub: CompliantExpr[Any, Any],
) -> CompliantExpr[Any, Any]:
if closed == "left":
return (compliant_expr >= lb) & (compliant_expr < ub)
elif closed == "right":
return (compliant_expr > lb) & (compliant_expr <= ub)
elif closed == "none":
return (compliant_expr > lb) & (compliant_expr < ub)
return (compliant_expr >= lb) & (compliant_expr <= ub)
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, func, self, lower_bound, upper_bound, str_as_lit=False
),
combine_metadata(
self,
lower_bound,
upper_bound,
str_as_lit=False,
allow_multi_output=False,
to_single_output=False,
),
)
def is_in(self, other: Any) -> Self:
"""Check if elements of this expression are present in the other iterable.
Arguments:
other: iterable
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 9, 10]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(b=nw.col("a").is_in([1, 2]))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 1 True |
| 1 2 True |
| 2 9 False |
| 3 10 False |
└──────────────────┘
"""
if isinstance(other, Iterable) and not isinstance(other, (str, bytes)):
return self._with_elementwise_op(
lambda plx: self._to_compliant_expr(plx).is_in(
to_native(other, pass_through=True)
)
)
else:
msg = "Narwhals `is_in` doesn't accept expressions as an argument, as opposed to Polars. You should provide an iterable instead."
raise NotImplementedError(msg)
def filter(self, *predicates: Any) -> Self:
"""Filters elements based on a condition, returning a new expression.
Arguments:
predicates: Conditions to filter by (which get ANDed together).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
... {"a": [2, 3, 4, 5, 6, 7], "b": [10, 11, 12, 13, 14, 15]}
... )
>>> df = nw.from_native(df_native)
>>> df.select(
... nw.col("a").filter(nw.col("a") > 4),
... nw.col("b").filter(nw.col("b") < 13),
... )
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 3 5 10 |
| 4 6 11 |
| 5 7 12 |
└──────────────────┘
"""
flat_predicates = flatten(predicates)
metadata = combine_metadata(
self,
*flat_predicates,
str_as_lit=False,
allow_multi_output=True,
to_single_output=False,
).with_filtration()
return self.__class__(
lambda plx: apply_n_ary_operation(
plx,
lambda *exprs: exprs[0].filter(*exprs[1:]),
self,
*flat_predicates,
str_as_lit=False,
),
metadata,
)
def is_null(self) -> Self:
"""Returns a boolean Series indicating which values are null.
Returns:
A new expression.
Notes:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
Examples:
>>> import duckdb
>>> import narwhals as nw
>>> df_native = duckdb.sql(
... "SELECT * FROM VALUES (null, CAST('NaN' AS DOUBLE)), (2, 2.) df(a, b)"
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_is_null=nw.col("a").is_null(), b_is_null=nw.col("b").is_null()
... )
┌──────────────────────────────────────────┐
| Narwhals LazyFrame |
|------------------------------------------|
|┌───────┬────────┬───────────┬───────────┐|
|│ a │ b │ a_is_null │ b_is_null │|
|│ int32 │ double │ boolean │ boolean │|
|├───────┼────────┼───────────┼───────────┤|
|│ NULL │ nan │ true │ false │|
|│ 2 │ 2.0 │ false │ false │|
|└───────┴────────┴───────────┴───────────┘|
└──────────────────────────────────────────┘
"""
return self._with_elementwise_op(
lambda plx: self._to_compliant_expr(plx).is_null()
)
def is_nan(self) -> Self:
"""Indicate which values are NaN.
Returns:
A new expression.
Notes:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
Examples:
>>> import duckdb
>>> import narwhals as nw
>>> df_native = duckdb.sql(
... "SELECT * FROM VALUES (null, CAST('NaN' AS DOUBLE)), (2, 2.) df(a, b)"
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_is_nan=nw.col("a").is_nan(), b_is_nan=nw.col("b").is_nan()
... )
┌────────────────────────────────────────┐
| Narwhals LazyFrame |
|----------------------------------------|
|┌───────┬────────┬──────────┬──────────┐|
|│ a │ b │ a_is_nan │ b_is_nan │|
|│ int32 │ double │ boolean │ boolean │|
|├───────┼────────┼──────────┼──────────┤|
|│ NULL │ nan │ NULL │ true │|
|│ 2 │ 2.0 │ false │ false │|
|└───────┴────────┴──────────┴──────────┘|
└────────────────────────────────────────┘
"""
return self._with_elementwise_op(
lambda plx: self._to_compliant_expr(plx).is_nan()
)
def arg_true(self) -> Self:
"""Find elements where boolean expression is True.
Returns:
A new expression.
"""
msg = (
"`Expr.arg_true` is deprecated and will be removed in a future version.\n\n"
"Note: this will remain available in `narwhals.stable.v1`.\n"
"See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
)
issue_deprecation_warning(msg, _version="1.23.0")
return self._with_filtration(lambda plx: self._to_compliant_expr(plx).arg_true())
def fill_null(
self,
value: Expr | NonNestedLiteral = None,
strategy: FillNullStrategy | None = None,
limit: int | None = None,
) -> Self:
"""Fill null values with given value.
Arguments:
value: Value or expression used to fill null values.
strategy: Strategy used to fill null values.
limit: Number of consecutive null values to fill when using the 'forward' or 'backward' strategy.
Returns:
A new expression.
Notes:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame(
... {
... "a": [2, None, None, 3],
... "b": [2.0, float("nan"), float("nan"), 3.0],
... "c": [1, 2, 3, 4],
... }
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a", "b").fill_null(0).name.suffix("_filled"),
... nw.col("a").fill_null(nw.col("c")).name.suffix("_filled_with_c"),
... )
┌────────────────────────────────────────────────────────────┐
| Narwhals DataFrame |
|------------------------------------------------------------|
|shape: (4, 6) |
|┌──────┬─────┬─────┬──────────┬──────────┬─────────────────┐|
|│ a ┆ b ┆ c ┆ a_filled ┆ b_filled ┆ a_filled_with_c │|
|│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │|
|│ i64 ┆ f64 ┆ i64 ┆ i64 ┆ f64 ┆ i64 │|
|╞══════╪═════╪═════╪══════════╪══════════╪═════════════════╡|
|│ 2 ┆ 2.0 ┆ 1 ┆ 2 ┆ 2.0 ┆ 2 │|
|│ null ┆ NaN ┆ 2 ┆ 0 ┆ NaN ┆ 2 │|
|│ null ┆ NaN ┆ 3 ┆ 0 ┆ NaN ┆ 3 │|
|│ 3 ┆ 3.0 ┆ 4 ┆ 3 ┆ 3.0 ┆ 3 │|
|└──────┴─────┴─────┴──────────┴──────────┴─────────────────┘|
└────────────────────────────────────────────────────────────┘
Using a strategy:
>>> df.select(
... nw.col("a", "b"),
... nw.col("a", "b")
... .fill_null(strategy="forward", limit=1)
... .name.suffix("_nulls_forward_filled"),
... )
┌────────────────────────────────────────────────────────────────┐
| Narwhals DataFrame |
|----------------------------------------------------------------|
|shape: (4, 4) |
|┌──────┬─────┬────────────────────────┬────────────────────────┐|
|│ a ┆ b ┆ a_nulls_forward_filled ┆ b_nulls_forward_filled │|
|│ --- ┆ --- ┆ --- ┆ --- │|
|│ i64 ┆ f64 ┆ i64 ┆ f64 │|
|╞══════╪═════╪════════════════════════╪════════════════════════╡|
|│ 2 ┆ 2.0 ┆ 2 ┆ 2.0 │|
|│ null ┆ NaN ┆ 2 ┆ NaN │|
|│ null ┆ NaN ┆ null ┆ NaN │|
|│ 3 ┆ 3.0 ┆ 3 ┆ 3.0 │|
|└──────┴─────┴────────────────────────┴────────────────────────┘|
└────────────────────────────────────────────────────────────────┘
"""
if value is not None and strategy is not None:
msg = "cannot specify both `value` and `strategy`"
raise ValueError(msg)
if value is None and strategy is None:
msg = "must specify either a fill `value` or `strategy`"
raise ValueError(msg)
if strategy is not None and strategy not in {"forward", "backward"}:
msg = f"strategy not supported: {strategy}"
raise ValueError(msg)
return self.__class__(
lambda plx: self._to_compliant_expr(plx).fill_null(
value=extract_compliant(plx, value, str_as_lit=True),
strategy=strategy,
limit=limit,
),
self._metadata.with_orderable_window()
if strategy is not None
else self._metadata,
)
# --- partial reduction ---
def drop_nulls(self) -> Self:
"""Drop null values.
Returns:
A new expression.
Notes:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [2.0, 4.0, float("nan"), 3.0, None, 5.0]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a").drop_nulls())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| shape: (5, 1) |
| ┌─────┐ |
| │ a │ |
| │ --- │ |
| │ f64 │ |
| ╞═════╡ |
| │ 2.0 │ |
| │ 4.0 │ |
| │ NaN │ |
| │ 3.0 │ |
| │ 5.0 │ |
| └─────┘ |
└──────────────────┘
"""
return self._with_filtration(
lambda plx: self._to_compliant_expr(plx).drop_nulls()
)
def sample(
self,
n: int | None = None,
*,
fraction: float | None = None,
with_replacement: bool = False,
seed: int | None = None,
) -> Self:
"""Sample randomly from this expression.
Warning:
`Expr.sample` is deprecated and will be removed in a future version.
Hint: instead of `df.select(nw.col('a').sample())`, use
`df.select(nw.col('a')).sample()` instead.
Note: this will remain available in `narwhals.stable.v1`.
See [stable api](../backcompat.md/) for more information.
Arguments:
n: Number of items to return. Cannot be used with fraction.
fraction: Fraction of items to return. Cannot be used with n.
with_replacement: Allow values to be sampled more than once.
seed: Seed for the random number generator. If set to None (default), a random
seed is generated for each sample operation.
Returns:
A new expression.
"""
msg = (
"`Expr.sample` is deprecated and will be removed in a future version.\n\n"
"Hint: instead of `df.select(nw.col('a').sample())`, use `df.select(nw.col('a')).sample()`.\n\n"
"Note: this will remain available in `narwhals.stable.v1`.\n"
"See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
)
issue_deprecation_warning(msg, _version="1.23.0")
return self._with_filtration(
lambda plx: self._to_compliant_expr(plx).sample(
n, fraction=fraction, with_replacement=with_replacement, seed=seed
)
)
def over(
self,
*partition_by: str | Sequence[str],
order_by: str | Sequence[str] | None = None,
) -> Self:
"""Compute expressions over the given groups (optionally with given order).
Arguments:
partition_by: Names of columns to compute window expression over.
Must be names of columns, as opposed to expressions -
so, this is a bit less flexible than Polars' `Expr.over`.
order_by: Column(s) to order window functions by.
For lazy backends, this argument is required when `over` is applied
to order-dependent functions, see [order-dependence](../concepts/order_dependence.md).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 4], "b": ["x", "x", "y"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_min_per_group=nw.col("a").min().over("b"))
┌────────────────────────┐
| Narwhals DataFrame |
|------------------------|
| a b a_min_per_group|
|0 1 x 1|
|1 2 x 1|
|2 4 y 4|
└────────────────────────┘
Cumulative operations are also supported, but (currently) only for
pandas and Polars:
>>> df.with_columns(a_cum_sum_per_group=nw.col("a").cum_sum().over("b"))
┌────────────────────────────┐
| Narwhals DataFrame |
|----------------------------|
| a b a_cum_sum_per_group|
|0 1 x 1|
|1 2 x 3|
|2 4 y 4|
└────────────────────────────┘
"""
flat_partition_by = flatten(partition_by)
flat_order_by = [order_by] if isinstance(order_by, str) else (order_by or [])
if not flat_partition_by and not flat_order_by: # pragma: no cover
msg = "At least one of `partition_by` or `order_by` must be specified."
raise ValueError(msg)
current_meta = self._metadata
if flat_order_by:
next_meta = current_meta.with_ordered_over()
elif not flat_partition_by: # pragma: no cover
msg = "At least one of `partition_by` or `order_by` must be specified."
raise InvalidOperationError(msg)
else:
next_meta = current_meta.with_partitioned_over()
return self.__class__(
lambda plx: self._to_compliant_expr(plx).over(
flat_partition_by, flat_order_by
),
next_meta,
)
def is_duplicated(self) -> Self:
r"""Return a boolean mask indicating duplicated values.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.all().is_duplicated().name.suffix("_is_duplicated"))
┌─────────────────────────────────────────┐
| Narwhals DataFrame |
|-----------------------------------------|
| a b a_is_duplicated b_is_duplicated|
|0 1 a True True|
|1 2 a False True|
|2 3 b False False|
|3 1 c True False|
└─────────────────────────────────────────┘
"""
return ~self.is_unique()
def is_unique(self) -> Self:
r"""Return a boolean mask indicating unique values.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.all().is_unique().name.suffix("_is_unique"))
┌─────────────────────────────────┐
| Narwhals DataFrame |
|---------------------------------|
| a b a_is_unique b_is_unique|
|0 1 a False False|
|1 2 a True False|
|2 3 b True True|
|3 1 c False True|
└─────────────────────────────────┘
"""
return self._with_unorderable_window(
lambda plx: self._to_compliant_expr(plx).is_unique()
)
def null_count(self) -> Self:
r"""Count null values.
Returns:
A new expression.
Notes:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
... {"a": [1, 2, None, 1], "b": ["a", None, "b", None]}
... )
>>> df = nw.from_native(df_native)
>>> df.select(nw.all().null_count())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 1 2 |
└──────────────────┘
"""
return self._with_aggregation(
lambda plx: self._to_compliant_expr(plx).null_count()
)
def is_first_distinct(self) -> Self:
r"""Return a boolean mask indicating the first occurrence of each distinct value.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.all().is_first_distinct().name.suffix("_is_first_distinct")
... )
┌─────────────────────────────────────────────────┐
| Narwhals DataFrame |
|-------------------------------------------------|
| a b a_is_first_distinct b_is_first_distinct|
|0 1 a True True|
|1 2 a True False|
|2 3 b True True|
|3 1 c False True|
└─────────────────────────────────────────────────┘
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).is_first_distinct()
)
def is_last_distinct(self) -> Self:
r"""Return a boolean mask indicating the last occurrence of each distinct value.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.all().is_last_distinct().name.suffix("_is_last_distinct")
... )
┌───────────────────────────────────────────────┐
| Narwhals DataFrame |
|-----------------------------------------------|
| a b a_is_last_distinct b_is_last_distinct|
|0 1 a False False|
|1 2 a True True|
|2 3 b True True|
|3 1 c True True|
└───────────────────────────────────────────────┘
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).is_last_distinct()
)
def quantile(
self, quantile: float, interpolation: RollingInterpolationMethod
) -> Self:
r"""Get quantile value.
Arguments:
quantile: Quantile between 0.0 and 1.0.
interpolation: Interpolation method.
Returns:
A new expression.
Note:
- pandas and Polars may have implementation differences for a given interpolation method.
- [dask](https://docs.dask.org/en/stable/generated/dask.dataframe.Series.quantile.html) has
its own method to approximate quantile and it doesn't implement 'nearest', 'higher',
'lower', 'midpoint' as interpolation method - use 'linear' which is closest to the
native 'dask' - method.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
... {"a": list(range(50)), "b": list(range(50, 100))}
... )
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").quantile(0.5, interpolation="linear"))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a b |
| 0 24.5 74.5 |
└──────────────────┘
"""
return self._with_aggregation(
lambda plx: self._to_compliant_expr(plx).quantile(quantile, interpolation)
)
def head(self, n: int = 10) -> Self:
r"""Get the first `n` rows.
Warning:
`Expr.head` is deprecated and will be removed in a future version.
Hint: instead of `df.select(nw.col('a').head())`, use
`df.select(nw.col('a')).head()` instead.
Note: this will remain available in `narwhals.stable.v1`.
See [stable api](../backcompat.md/) for more information.
Arguments:
n: Number of rows to return.
Returns:
A new expression.
"""
msg = (
"`Expr.head` is deprecated and will be removed in a future version.\n\n"
"Hint: instead of `df.select(nw.col('a').head())`, use `df.select(nw.col('a')).head()`.\n\n"
"Note: this will remain available in `narwhals.stable.v1`.\n"
"See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
)
issue_deprecation_warning(msg, _version="1.23.0")
return self._with_orderable_filtration(
lambda plx: self._to_compliant_expr(plx).head(n)
)
def tail(self, n: int = 10) -> Self:
r"""Get the last `n` rows.
Warning:
`Expr.tail` is deprecated and will be removed in a future version.
Hint: instead of `df.select(nw.col('a').tail())`, use
`df.select(nw.col('a')).tail()` instead.
Note: this will remain available in `narwhals.stable.v1`.
See [stable api](../backcompat.md/) for more information.
Arguments:
n: Number of rows to return.
Returns:
A new expression.
"""
msg = (
"`Expr.tail` is deprecated and will be removed in a future version.\n\n"
"Hint: instead of `df.select(nw.col('a').tail())`, use `df.select(nw.col('a')).tail()`.\n\n"
"Note: this will remain available in `narwhals.stable.v1`.\n"
"See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
)
issue_deprecation_warning(msg, _version="1.23.0")
return self._with_filtration(lambda plx: self._to_compliant_expr(plx).tail(n))
def round(self, decimals: int = 0) -> Self:
r"""Round underlying floating point data by `decimals` digits.
Arguments:
decimals: Number of decimals to round by.
Returns:
A new expression.
Notes:
For values exactly halfway between rounded decimal values pandas behaves differently than Polars and Arrow.
pandas rounds to the nearest even value (e.g. -0.5 and 0.5 round to 0.0, 1.5 and 2.5 round to 2.0, 3.5 and
4.5 to 4.0, etc..).
Polars and Arrow round away from 0 (e.g. -0.5 to -1.0, 0.5 to 1.0, 1.5 to 2.0, 2.5 to 3.0, etc..).
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1.12345, 2.56789, 3.901234]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_rounded=nw.col("a").round(1))
┌──────────────────────┐
| Narwhals DataFrame |
|----------------------|
| a a_rounded|
|0 1.123450 1.1|
|1 2.567890 2.6|
|2 3.901234 3.9|
└──────────────────────┘
"""
return self._with_elementwise_op(
lambda plx: self._to_compliant_expr(plx).round(decimals)
)
def len(self) -> Self:
r"""Return the number of elements in the column.
Null values count towards the total.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": ["x", "y", "z"], "b": [1, 2, 1]})
>>> df = nw.from_native(df_native)
>>> df.select(
... nw.col("a").filter(nw.col("b") == 1).len().alias("a1"),
... nw.col("a").filter(nw.col("b") == 2).len().alias("a2"),
... )
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a1 a2 |
| 0 2 1 |
└──────────────────┘
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).len())
def gather_every(self, n: int, offset: int = 0) -> Self:
r"""Take every nth value in the Series and return as new Series.
Warning:
`Expr.gather_every` is deprecated and will be removed in a future version.
Hint: instead of `df.select(nw.col('a').gather_every())`, use
`df.select(nw.col('a')).gather_every()` instead.
Note: this will remain available in `narwhals.stable.v1`.
See [stable api](../backcompat.md/) for more information.
Arguments:
n: Gather every *n*-th row.
offset: Starting index.
Returns:
A new expression.
"""
msg = (
"`Expr.gather_every` is deprecated and will be removed in a future version.\n\n"
"Hint: instead of `df.select(nw.col('a').gather_every())`, use `df.select(nw.col('a')).gather_every()`.\n\n"
"Note: this will remain available in `narwhals.stable.v1`.\n"
"See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
)
issue_deprecation_warning(msg, _version="1.23.0")
return self._with_filtration(
lambda plx: self._to_compliant_expr(plx).gather_every(n=n, offset=offset)
)
def clip(
self,
lower_bound: IntoExpr | NumericLiteral | TemporalLiteral | None = None,
upper_bound: IntoExpr | NumericLiteral | TemporalLiteral | None = None,
) -> Self:
r"""Clip values in the Series.
Arguments:
lower_bound: Lower bound value. String literals are treated as column names.
upper_bound: Upper bound value. String literals are treated as column names.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_clipped=nw.col("a").clip(-1, 3))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a a_clipped |
| 0 1 1 |
| 1 2 2 |
| 2 3 3 |
└──────────────────┘
"""
return self.__class__(
lambda plx: apply_n_ary_operation(
plx,
lambda *exprs: exprs[0].clip(
exprs[1] if lower_bound is not None else None,
exprs[2] if upper_bound is not None else None,
),
self,
lower_bound,
upper_bound,
str_as_lit=False,
),
combine_metadata(
self,
lower_bound,
upper_bound,
str_as_lit=False,
allow_multi_output=False,
to_single_output=False,
),
)
def mode(self) -> Self:
r"""Compute the most occurring value(s).
Can return multiple values.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 1, 2, 3], "b": [1, 1, 2, 2]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a").mode()).sort("a")
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a |
| 0 1 |
└──────────────────┘
"""
return self._with_filtration(lambda plx: self._to_compliant_expr(plx).mode())
def is_finite(self) -> Self:
"""Returns boolean values indicating which original values are finite.
Warning:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
`is_finite` will return False for NaN and Null's in the Dask and
pandas non-nullable backend, while for Polars, PyArrow and pandas
nullable backends null values are kept as such.
Returns:
Expression of `Boolean` data type.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [float("nan"), float("inf"), 2.0, None]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_is_finite=nw.col("a").is_finite())
┌──────────────────────┐
| Narwhals DataFrame |
|----------------------|
|shape: (4, 2) |
|┌──────┬─────────────┐|
|│ a ┆ a_is_finite │|
|│ --- ┆ --- │|
|│ f64 ┆ bool │|
|╞══════╪═════════════╡|
|│ NaN ┆ false │|
|│ inf ┆ false │|
|│ 2.0 ┆ true │|
|│ null ┆ null │|
|└──────┴─────────────┘|
└──────────────────────┘
"""
return self._with_elementwise_op(
lambda plx: self._to_compliant_expr(plx).is_finite()
)
def cum_count(self, *, reverse: bool = False) -> Self:
r"""Return the cumulative count of the non-null values in the column.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
reverse: reverse the operation
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": ["x", "k", None, "d"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a").cum_count().alias("a_cum_count"),
... nw.col("a").cum_count(reverse=True).alias("a_cum_count_reverse"),
... )
┌─────────────────────────────────────────┐
| Narwhals DataFrame |
|-----------------------------------------|
| a a_cum_count a_cum_count_reverse|
|0 x 1 3|
|1 k 2 2|
|2 None 2 1|
|3 d 3 1|
└─────────────────────────────────────────┘
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).cum_count(reverse=reverse)
)
def cum_min(self, *, reverse: bool = False) -> Self:
r"""Return the cumulative min of the non-null values in the column.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
reverse: reverse the operation
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [3, 1, None, 2]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a").cum_min().alias("a_cum_min"),
... nw.col("a").cum_min(reverse=True).alias("a_cum_min_reverse"),
... )
┌────────────────────────────────────┐
| Narwhals DataFrame |
|------------------------------------|
| a a_cum_min a_cum_min_reverse|
|0 3.0 3.0 1.0|
|1 1.0 1.0 1.0|
|2 NaN NaN NaN|
|3 2.0 1.0 2.0|
└────────────────────────────────────┘
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).cum_min(reverse=reverse)
)
def cum_max(self, *, reverse: bool = False) -> Self:
r"""Return the cumulative max of the non-null values in the column.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
reverse: reverse the operation
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 3, None, 2]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a").cum_max().alias("a_cum_max"),
... nw.col("a").cum_max(reverse=True).alias("a_cum_max_reverse"),
... )
┌────────────────────────────────────┐
| Narwhals DataFrame |
|------------------------------------|
| a a_cum_max a_cum_max_reverse|
|0 1.0 1.0 3.0|
|1 3.0 3.0 3.0|
|2 NaN NaN NaN|
|3 2.0 3.0 2.0|
└────────────────────────────────────┘
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).cum_max(reverse=reverse)
)
def cum_prod(self, *, reverse: bool = False) -> Self:
r"""Return the cumulative product of the non-null values in the column.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
reverse: reverse the operation
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 3, None, 2]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a").cum_prod().alias("a_cum_prod"),
... nw.col("a").cum_prod(reverse=True).alias("a_cum_prod_reverse"),
... )
┌──────────────────────────────────────┐
| Narwhals DataFrame |
|--------------------------------------|
| a a_cum_prod a_cum_prod_reverse|
|0 1.0 1.0 6.0|
|1 3.0 3.0 6.0|
|2 NaN NaN NaN|
|3 2.0 6.0 2.0|
└──────────────────────────────────────┘
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).cum_prod(reverse=reverse)
)
def rolling_sum(
self, window_size: int, *, min_samples: int | None = None, center: bool = False
) -> Self:
"""Apply a rolling sum (moving sum) over the values.
A window of length `window_size` will traverse the values. The resulting values
will be aggregated to their sum.
The window at a given row will include the row itself and the `window_size - 1`
elements before it.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
window_size: The length of the window in number of elements. It must be a
strictly positive integer.
min_samples: The number of values in the window that should be non-null before
computing a result. If set to `None` (default), it will be set equal to
`window_size`. If provided, it must be a strictly positive integer, and
less than or equal to `window_size`
center: Set the labels at the center of the window.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_rolling_sum=nw.col("a").rolling_sum(window_size=3, min_samples=1)
... )
┌─────────────────────┐
| Narwhals DataFrame |
|---------------------|
| a a_rolling_sum|
|0 1.0 1.0|
|1 2.0 3.0|
|2 NaN 3.0|
|3 4.0 6.0|
└─────────────────────┘
"""
window_size, min_samples_int = _validate_rolling_arguments(
window_size=window_size, min_samples=min_samples
)
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).rolling_sum(
window_size=window_size, min_samples=min_samples_int, center=center
)
)
def rolling_mean(
self, window_size: int, *, min_samples: int | None = None, center: bool = False
) -> Self:
"""Apply a rolling mean (moving mean) over the values.
A window of length `window_size` will traverse the values. The resulting values
will be aggregated to their mean.
The window at a given row will include the row itself and the `window_size - 1`
elements before it.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
window_size: The length of the window in number of elements. It must be a
strictly positive integer.
min_samples: The number of values in the window that should be non-null before
computing a result. If set to `None` (default), it will be set equal to
`window_size`. If provided, it must be a strictly positive integer, and
less than or equal to `window_size`
center: Set the labels at the center of the window.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_rolling_mean=nw.col("a").rolling_mean(window_size=3, min_samples=1)
... )
┌──────────────────────┐
| Narwhals DataFrame |
|----------------------|
| a a_rolling_mean|
|0 1.0 1.0|
|1 2.0 1.5|
|2 NaN 1.5|
|3 4.0 3.0|
└──────────────────────┘
"""
window_size, min_samples = _validate_rolling_arguments(
window_size=window_size, min_samples=min_samples
)
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).rolling_mean(
window_size=window_size, min_samples=min_samples, center=center
)
)
def rolling_var(
self,
window_size: int,
*,
min_samples: int | None = None,
center: bool = False,
ddof: int = 1,
) -> Self:
"""Apply a rolling variance (moving variance) over the values.
A window of length `window_size` will traverse the values. The resulting values
will be aggregated to their variance.
The window at a given row will include the row itself and the `window_size - 1`
elements before it.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
window_size: The length of the window in number of elements. It must be a
strictly positive integer.
min_samples: The number of values in the window that should be non-null before
computing a result. If set to `None` (default), it will be set equal to
`window_size`. If provided, it must be a strictly positive integer, and
less than or equal to `window_size`.
center: Set the labels at the center of the window.
ddof: Delta Degrees of Freedom; the divisor for a length N window is N - ddof.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_rolling_var=nw.col("a").rolling_var(window_size=3, min_samples=1)
... )
┌─────────────────────┐
| Narwhals DataFrame |
|---------------------|
| a a_rolling_var|
|0 1.0 NaN|
|1 2.0 0.5|
|2 NaN 0.5|
|3 4.0 2.0|
└─────────────────────┘
"""
window_size, min_samples = _validate_rolling_arguments(
window_size=window_size, min_samples=min_samples
)
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).rolling_var(
window_size=window_size, min_samples=min_samples, center=center, ddof=ddof
)
)
def rolling_std(
self,
window_size: int,
*,
min_samples: int | None = None,
center: bool = False,
ddof: int = 1,
) -> Self:
"""Apply a rolling standard deviation (moving standard deviation) over the values.
A window of length `window_size` will traverse the values. The resulting values
will be aggregated to their standard deviation.
The window at a given row will include the row itself and the `window_size - 1`
elements before it.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
window_size: The length of the window in number of elements. It must be a
strictly positive integer.
min_samples: The number of values in the window that should be non-null before
computing a result. If set to `None` (default), it will be set equal to
`window_size`. If provided, it must be a strictly positive integer, and
less than or equal to `window_size`.
center: Set the labels at the center of the window.
ddof: Delta Degrees of Freedom; the divisor for a length N window is N - ddof.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_rolling_std=nw.col("a").rolling_std(window_size=3, min_samples=1)
... )
┌─────────────────────┐
| Narwhals DataFrame |
|---------------------|
| a a_rolling_std|
|0 1.0 NaN|
|1 2.0 0.707107|
|2 NaN 0.707107|
|3 4.0 1.414214|
└─────────────────────┘
"""
window_size, min_samples = _validate_rolling_arguments(
window_size=window_size, min_samples=min_samples
)
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).rolling_std(
window_size=window_size, min_samples=min_samples, center=center, ddof=ddof
)
)
def rank(self, method: RankMethod = "average", *, descending: bool = False) -> Self:
"""Assign ranks to data, dealing with ties appropriately.
Notes:
The resulting dtype may differ between backends.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
method: The method used to assign ranks to tied elements.
The following methods are available (default is 'average')
- *"average"*: The average of the ranks that would have been assigned to
all the tied values is assigned to each value.
- *"min"*: The minimum of the ranks that would have been assigned to all
the tied values is assigned to each value. (This is also referred to
as "competition" ranking.)
- *"max"*: The maximum of the ranks that would have been assigned to all
the tied values is assigned to each value.
- *"dense"*: Like "min", but the rank of the next highest element is
assigned the rank immediately after those assigned to the tied elements.
- *"ordinal"*: All values are given a distinct rank, corresponding to the
order that the values occur in the Series.
descending: Rank in descending order.
Returns:
A new expression with rank data.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [3, 6, 1, 1, 6]})
>>> df = nw.from_native(df_native)
>>> result = df.with_columns(rank=nw.col("a").rank(method="dense"))
>>> result
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| a rank |
| 0 3 2.0 |
| 1 6 3.0 |
| 2 1 1.0 |
| 3 1 1.0 |
| 4 6 3.0 |
└──────────────────┘
"""
supported_rank_methods = {"average", "min", "max", "dense", "ordinal"}
if method not in supported_rank_methods:
msg = (
"Ranking method must be one of {'average', 'min', 'max', 'dense', 'ordinal'}. "
f"Found '{method}'"
)
raise ValueError(msg)
return self._with_unorderable_window(
lambda plx: self._to_compliant_expr(plx).rank(
method=method, descending=descending
)
)
def log(self, base: float = math.e) -> Self:
r"""Compute the logarithm to a given base.
Arguments:
base: Given base, defaults to `e`
Returns:
A new expression.
Examples:
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table({"values": [1, 2, 4]})
>>> df = nw.from_native(df_native)
>>> result = df.with_columns(
... log=nw.col("values").log(), log_2=nw.col("values").log(base=2)
... )
>>> result
┌────────────────────────────────────────────────┐
| Narwhals DataFrame |
|------------------------------------------------|
|pyarrow.Table |
|values: int64 |
|log: double |
|log_2: double |
|---- |
|values: [[1,2,4]] |
|log: [[0,0.6931471805599453,1.3862943611198906]]|
|log_2: [[0,1,2]] |
└────────────────────────────────────────────────┘
"""
return self._with_elementwise_op(
lambda plx: self._to_compliant_expr(plx).log(base=base)
)
def exp(self) -> Self:
r"""Compute the exponent.
Returns:
A new expression.
Examples:
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table({"values": [-1, 0, 1]})
>>> df = nw.from_native(df_native)
>>> result = df.with_columns(exp=nw.col("values").exp())
>>> result
┌────────────────────────────────────────────────┐
| Narwhals DataFrame |
|------------------------------------------------|
|pyarrow.Table |
|values: int64 |
|exp: double |
|---- |
|values: [[-1,0,1]] |
|exp: [[0.36787944117144233,1,2.718281828459045]]|
└────────────────────────────────────────────────┘
"""
return self._with_elementwise_op(lambda plx: self._to_compliant_expr(plx).exp())
@property
def str(self) -> ExprStringNamespace[Self]:
return ExprStringNamespace(self)
@property
def dt(self) -> ExprDateTimeNamespace[Self]:
return ExprDateTimeNamespace(self)
@property
def cat(self) -> ExprCatNamespace[Self]:
return ExprCatNamespace(self)
@property
def name(self) -> ExprNameNamespace[Self]:
return ExprNameNamespace(self)
@property
def list(self) -> ExprListNamespace[Self]:
return ExprListNamespace(self)
@property
def struct(self) -> ExprStructNamespace[Self]:
return ExprStructNamespace(self)
__all__ = ["Expr"]