aboutsummaryrefslogtreecommitdiff
path: root/app.py
blob: 51e056471474a482495ee6183e86d1699d729239 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from dash import Dash, dcc, html, Input, Output
from analysis import calc_emas, find_intersections, interpolate_intersection, calculate_profit
import plotly.graph_objects as go
import json
import datetime

app = Dash(__name__)

# pull stock data from json files
timestamps_file = open('timestamps.json', 'r')
timestamps_file_data = timestamps_file.read()
timestamps_raw = json.loads(timestamps_file_data)
timestamps = [datetime.datetime.fromtimestamp(t) for t in timestamps_raw]

prices_file = open('close_prices.json', 'r')
prices = json.loads(prices_file.read())

ema_5 = calc_emas(5, prices)
ema_13 = calc_emas(13, prices)

intersection_indices = find_intersections(ema_5, ema_13, offset=13) # offset so don't calculate the SMA days
interpolated_intersections = [interpolate_intersection(indices, timestamps, ema_5, ema_13) for indices in intersection_indices]
intersected_x = []
intersected_y = []
for x,y in interpolated_intersections:
    intersected_x.append(x)
    intersected_y.append(y)

profit = calculate_profit(ema_5, ema_13, prices, timestamps, 13)
buy_info = profit[-2]
buy_x = []
buy_y = []
for x,y,_ in buy_info:
    buy_x.append(x)
    buy_y.append(y)

sell_info = profit[-1]
sell_x = []
sell_y = []
for x,y,_ in sell_info:
    sell_x.append(x)
    sell_y.append(y)

print("Result Analysis:\n", "Percent gain/loss:\t", profit[0])
percent_gain = profit[0] * 100

app.layout = html.Div([
    html.H4('Interactive color selection with simple Dash example'),
    html.P("Select color:"),
    dcc.Dropdown(
        id="dropdown",
        options=['Gold', 'MediumTurquoise', 'LightGreen'],
        value='Gold',
        clearable=False,
    ),
    dcc.Graph(id="graph"),
    html.P("If bought and sold on these signals, the percent gain/loss would be: " + str(round(percent_gain, 4)))
])

@app.callback(
    Output("graph", "figure"),
    Input("dropdown", "value"))
def display_color(color):
    fig = go.Figure(
        [
            go.Scatter(name='Price', x=timestamps, y=prices, line=dict(color='rgb(0, 255, 0)'), mode='lines'), 
            # go.Scatter(name='5 day EMA', x=timestamps, y=ema_5, line=dict(color='rgb(0, 255, 0)'),  mode='lines'), 
            # go.Scatter(name='13 day EMA', x=timestamps, y=ema_13, line=dict(color='rgb(0, 0, 255)'),  mode='lines'), 
            # go.Scatter(name='EMA Intersections', x=intersected_x, y=intersected_y, line=dict(color='rgb(255, 0, 0)'), mode='markers')
            go.Scatter(name='Buys', x=buy_x, y=buy_y, line=dict(color='rgb(0, 0, 255)'), mode='markers', marker_size=10),
            go.Scatter(name='Sells', x=sell_x, y=sell_y, line=dict(color='rgb(255, 255, 0)'), mode='markers', marker_size=10),
        ]
    )
    return fig


app.run(debug=True)