diff options
Diffstat (limited to 'Eigen/src/Core/Redux.h')
-rw-r--r-- | Eigen/src/Core/Redux.h | 515 |
1 files changed, 515 insertions, 0 deletions
diff --git a/Eigen/src/Core/Redux.h b/Eigen/src/Core/Redux.h new file mode 100644 index 0000000..b6790d1 --- /dev/null +++ b/Eigen/src/Core/Redux.h @@ -0,0 +1,515 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REDUX_H +#define EIGEN_REDUX_H + +namespace Eigen { + +namespace internal { + +// TODO +// * implement other kind of vectorization +// * factorize code + +/*************************************************************************** +* Part 1 : the logic deciding a strategy for vectorization and unrolling +***************************************************************************/ + +template<typename Func, typename Evaluator> +struct redux_traits +{ +public: + typedef typename find_best_packet<typename Evaluator::Scalar,Evaluator::SizeAtCompileTime>::type PacketType; + enum { + PacketSize = unpacket_traits<PacketType>::size, + InnerMaxSize = int(Evaluator::IsRowMajor) + ? Evaluator::MaxColsAtCompileTime + : Evaluator::MaxRowsAtCompileTime, + OuterMaxSize = int(Evaluator::IsRowMajor) + ? Evaluator::MaxRowsAtCompileTime + : Evaluator::MaxColsAtCompileTime, + SliceVectorizedWork = int(InnerMaxSize)==Dynamic ? Dynamic + : int(OuterMaxSize)==Dynamic ? (int(InnerMaxSize)>=int(PacketSize) ? Dynamic : 0) + : (int(InnerMaxSize)/int(PacketSize)) * int(OuterMaxSize) + }; + + enum { + MightVectorize = (int(Evaluator::Flags)&ActualPacketAccessBit) + && (functor_traits<Func>::PacketAccess), + MayLinearVectorize = bool(MightVectorize) && (int(Evaluator::Flags)&LinearAccessBit), + MaySliceVectorize = bool(MightVectorize) && (int(SliceVectorizedWork)==Dynamic || int(SliceVectorizedWork)>=3) + }; + +public: + enum { + Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) + : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) + : int(DefaultTraversal) + }; + +public: + enum { + Cost = Evaluator::SizeAtCompileTime == Dynamic ? HugeCost + : int(Evaluator::SizeAtCompileTime) * int(Evaluator::CoeffReadCost) + (Evaluator::SizeAtCompileTime-1) * functor_traits<Func>::Cost, + UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) + }; + +public: + enum { + Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling + }; + +#ifdef EIGEN_DEBUG_ASSIGN + static void debug() + { + std::cerr << "Xpr: " << typeid(typename Evaluator::XprType).name() << std::endl; + std::cerr.setf(std::ios::hex, std::ios::basefield); + EIGEN_DEBUG_VAR(Evaluator::Flags) + std::cerr.unsetf(std::ios::hex); + EIGEN_DEBUG_VAR(InnerMaxSize) + EIGEN_DEBUG_VAR(OuterMaxSize) + EIGEN_DEBUG_VAR(SliceVectorizedWork) + EIGEN_DEBUG_VAR(PacketSize) + EIGEN_DEBUG_VAR(MightVectorize) + EIGEN_DEBUG_VAR(MayLinearVectorize) + EIGEN_DEBUG_VAR(MaySliceVectorize) + std::cerr << "Traversal" << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl; + EIGEN_DEBUG_VAR(UnrollingLimit) + std::cerr << "Unrolling" << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl; + std::cerr << std::endl; + } +#endif +}; + +/*************************************************************************** +* Part 2 : unrollers +***************************************************************************/ + +/*** no vectorization ***/ + +template<typename Func, typename Evaluator, int Start, int Length> +struct redux_novec_unroller +{ + enum { + HalfLength = Length/2 + }; + + typedef typename Evaluator::Scalar Scalar; + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func& func) + { + return func(redux_novec_unroller<Func, Evaluator, Start, HalfLength>::run(eval,func), + redux_novec_unroller<Func, Evaluator, Start+HalfLength, Length-HalfLength>::run(eval,func)); + } +}; + +template<typename Func, typename Evaluator, int Start> +struct redux_novec_unroller<Func, Evaluator, Start, 1> +{ + enum { + outer = Start / Evaluator::InnerSizeAtCompileTime, + inner = Start % Evaluator::InnerSizeAtCompileTime + }; + + typedef typename Evaluator::Scalar Scalar; + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func&) + { + return eval.coeffByOuterInner(outer, inner); + } +}; + +// This is actually dead code and will never be called. It is required +// to prevent false warnings regarding failed inlining though +// for 0 length run() will never be called at all. +template<typename Func, typename Evaluator, int Start> +struct redux_novec_unroller<Func, Evaluator, Start, 0> +{ + typedef typename Evaluator::Scalar Scalar; + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Evaluator&, const Func&) { return Scalar(); } +}; + +/*** vectorization ***/ + +template<typename Func, typename Evaluator, int Start, int Length> +struct redux_vec_unroller +{ + template<typename PacketType> + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE PacketType run(const Evaluator &eval, const Func& func) + { + enum { + PacketSize = unpacket_traits<PacketType>::size, + HalfLength = Length/2 + }; + + return func.packetOp( + redux_vec_unroller<Func, Evaluator, Start, HalfLength>::template run<PacketType>(eval,func), + redux_vec_unroller<Func, Evaluator, Start+HalfLength, Length-HalfLength>::template run<PacketType>(eval,func) ); + } +}; + +template<typename Func, typename Evaluator, int Start> +struct redux_vec_unroller<Func, Evaluator, Start, 1> +{ + template<typename PacketType> + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE PacketType run(const Evaluator &eval, const Func&) + { + enum { + PacketSize = unpacket_traits<PacketType>::size, + index = Start * PacketSize, + outer = index / int(Evaluator::InnerSizeAtCompileTime), + inner = index % int(Evaluator::InnerSizeAtCompileTime), + alignment = Evaluator::Alignment + }; + return eval.template packetByOuterInner<alignment,PacketType>(outer, inner); + } +}; + +/*************************************************************************** +* Part 3 : implementation of all cases +***************************************************************************/ + +template<typename Func, typename Evaluator, + int Traversal = redux_traits<Func, Evaluator>::Traversal, + int Unrolling = redux_traits<Func, Evaluator>::Unrolling +> +struct redux_impl; + +template<typename Func, typename Evaluator> +struct redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling> +{ + typedef typename Evaluator::Scalar Scalar; + + template<typename XprType> + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE + Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) + { + eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); + Scalar res; + res = eval.coeffByOuterInner(0, 0); + for(Index i = 1; i < xpr.innerSize(); ++i) + res = func(res, eval.coeffByOuterInner(0, i)); + for(Index i = 1; i < xpr.outerSize(); ++i) + for(Index j = 0; j < xpr.innerSize(); ++j) + res = func(res, eval.coeffByOuterInner(i, j)); + return res; + } +}; + +template<typename Func, typename Evaluator> +struct redux_impl<Func,Evaluator, DefaultTraversal, CompleteUnrolling> + : redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime> +{ + typedef redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime> Base; + typedef typename Evaluator::Scalar Scalar; + template<typename XprType> + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE + Scalar run(const Evaluator &eval, const Func& func, const XprType& /*xpr*/) + { + return Base::run(eval,func); + } +}; + +template<typename Func, typename Evaluator> +struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, NoUnrolling> +{ + typedef typename Evaluator::Scalar Scalar; + typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar; + + template<typename XprType> + static Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) + { + const Index size = xpr.size(); + + const Index packetSize = redux_traits<Func, Evaluator>::PacketSize; + const int packetAlignment = unpacket_traits<PacketScalar>::alignment; + enum { + alignment0 = (bool(Evaluator::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned), + alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Evaluator::Alignment) + }; + const Index alignedStart = internal::first_default_aligned(xpr); + const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize); + const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize); + const Index alignedEnd2 = alignedStart + alignedSize2; + const Index alignedEnd = alignedStart + alignedSize; + Scalar res; + if(alignedSize) + { + PacketScalar packet_res0 = eval.template packet<alignment,PacketScalar>(alignedStart); + if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop + { + PacketScalar packet_res1 = eval.template packet<alignment,PacketScalar>(alignedStart+packetSize); + for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize) + { + packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment,PacketScalar>(index)); + packet_res1 = func.packetOp(packet_res1, eval.template packet<alignment,PacketScalar>(index+packetSize)); + } + + packet_res0 = func.packetOp(packet_res0,packet_res1); + if(alignedEnd>alignedEnd2) + packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment,PacketScalar>(alignedEnd2)); + } + res = func.predux(packet_res0); + + for(Index index = 0; index < alignedStart; ++index) + res = func(res,eval.coeff(index)); + + for(Index index = alignedEnd; index < size; ++index) + res = func(res,eval.coeff(index)); + } + else // too small to vectorize anything. + // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. + { + res = eval.coeff(0); + for(Index index = 1; index < size; ++index) + res = func(res,eval.coeff(index)); + } + + return res; + } +}; + +// NOTE: for SliceVectorizedTraversal we simply bypass unrolling +template<typename Func, typename Evaluator, int Unrolling> +struct redux_impl<Func, Evaluator, SliceVectorizedTraversal, Unrolling> +{ + typedef typename Evaluator::Scalar Scalar; + typedef typename redux_traits<Func, Evaluator>::PacketType PacketType; + + template<typename XprType> + EIGEN_DEVICE_FUNC static Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) + { + eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); + const Index innerSize = xpr.innerSize(); + const Index outerSize = xpr.outerSize(); + enum { + packetSize = redux_traits<Func, Evaluator>::PacketSize + }; + const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; + Scalar res; + if(packetedInnerSize) + { + PacketType packet_res = eval.template packet<Unaligned,PacketType>(0,0); + for(Index j=0; j<outerSize; ++j) + for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize)) + packet_res = func.packetOp(packet_res, eval.template packetByOuterInner<Unaligned,PacketType>(j,i)); + + res = func.predux(packet_res); + for(Index j=0; j<outerSize; ++j) + for(Index i=packetedInnerSize; i<innerSize; ++i) + res = func(res, eval.coeffByOuterInner(j,i)); + } + else // too small to vectorize anything. + // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. + { + res = redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>::run(eval, func, xpr); + } + + return res; + } +}; + +template<typename Func, typename Evaluator> +struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, CompleteUnrolling> +{ + typedef typename Evaluator::Scalar Scalar; + + typedef typename redux_traits<Func, Evaluator>::PacketType PacketType; + enum { + PacketSize = redux_traits<Func, Evaluator>::PacketSize, + Size = Evaluator::SizeAtCompileTime, + VectorizedSize = (int(Size) / int(PacketSize)) * int(PacketSize) + }; + + template<typename XprType> + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE + Scalar run(const Evaluator &eval, const Func& func, const XprType &xpr) + { + EIGEN_ONLY_USED_FOR_DEBUG(xpr) + eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); + if (VectorizedSize > 0) { + Scalar res = func.predux(redux_vec_unroller<Func, Evaluator, 0, Size / PacketSize>::template run<PacketType>(eval,func)); + if (VectorizedSize != Size) + res = func(res,redux_novec_unroller<Func, Evaluator, VectorizedSize, Size-VectorizedSize>::run(eval,func)); + return res; + } + else { + return redux_novec_unroller<Func, Evaluator, 0, Size>::run(eval,func); + } + } +}; + +// evaluator adaptor +template<typename _XprType> +class redux_evaluator : public internal::evaluator<_XprType> +{ + typedef internal::evaluator<_XprType> Base; +public: + typedef _XprType XprType; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit redux_evaluator(const XprType &xpr) : Base(xpr) {} + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename XprType::PacketScalar PacketScalar; + + enum { + MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = XprType::MaxColsAtCompileTime, + // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator + Flags = Base::Flags & ~DirectAccessBit, + IsRowMajor = XprType::IsRowMajor, + SizeAtCompileTime = XprType::SizeAtCompileTime, + InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeffByOuterInner(Index outer, Index inner) const + { return Base::coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } + + template<int LoadMode, typename PacketType> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketType packetByOuterInner(Index outer, Index inner) const + { return Base::template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } + +}; + +} // end namespace internal + +/*************************************************************************** +* Part 4 : public API +***************************************************************************/ + + +/** \returns the result of a full redux operation on the whole matrix or vector using \a func + * + * The template parameter \a BinaryOp is the type of the functor \a func which must be + * an associative operator. Both current C++98 and C++11 functor styles are handled. + * + * \warning the matrix must be not empty, otherwise an assertion is triggered. + * + * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() + */ +template<typename Derived> +template<typename Func> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar +DenseBase<Derived>::redux(const Func& func) const +{ + eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); + + typedef typename internal::redux_evaluator<Derived> ThisEvaluator; + ThisEvaluator thisEval(derived()); + + // The initial expression is passed to the reducer as an additional argument instead of + // passing it as a member of redux_evaluator to help + return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func, derived()); +} + +/** \returns the minimum of all coefficients of \c *this. + * In case \c *this contains NaN, NaNPropagation determines the behavior: + * NaNPropagation == PropagateFast : undefined + * NaNPropagation == PropagateNaN : result is NaN + * NaNPropagation == PropagateNumbers : result is minimum of elements that are not NaN + * \warning the matrix must be not empty, otherwise an assertion is triggered. + */ +template<typename Derived> +template<int NaNPropagation> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar +DenseBase<Derived>::minCoeff() const +{ + return derived().redux(Eigen::internal::scalar_min_op<Scalar,Scalar, NaNPropagation>()); +} + +/** \returns the maximum of all coefficients of \c *this. + * In case \c *this contains NaN, NaNPropagation determines the behavior: + * NaNPropagation == PropagateFast : undefined + * NaNPropagation == PropagateNaN : result is NaN + * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN + * \warning the matrix must be not empty, otherwise an assertion is triggered. + */ +template<typename Derived> +template<int NaNPropagation> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar +DenseBase<Derived>::maxCoeff() const +{ + return derived().redux(Eigen::internal::scalar_max_op<Scalar,Scalar, NaNPropagation>()); +} + +/** \returns the sum of all coefficients of \c *this + * + * If \c *this is empty, then the value 0 is returned. + * + * \sa trace(), prod(), mean() + */ +template<typename Derived> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar +DenseBase<Derived>::sum() const +{ + if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) + return Scalar(0); + return derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>()); +} + +/** \returns the mean of all coefficients of *this +* +* \sa trace(), prod(), sum() +*/ +template<typename Derived> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar +DenseBase<Derived>::mean() const +{ +#ifdef __INTEL_COMPILER + #pragma warning push + #pragma warning ( disable : 2259 ) +#endif + return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>())) / Scalar(this->size()); +#ifdef __INTEL_COMPILER + #pragma warning pop +#endif +} + +/** \returns the product of all coefficients of *this + * + * Example: \include MatrixBase_prod.cpp + * Output: \verbinclude MatrixBase_prod.out + * + * \sa sum(), mean(), trace() + */ +template<typename Derived> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar +DenseBase<Derived>::prod() const +{ + if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) + return Scalar(1); + return derived().redux(Eigen::internal::scalar_product_op<Scalar>()); +} + +/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. + * + * \c *this can be any matrix, not necessarily square. + * + * \sa diagonal(), sum() + */ +template<typename Derived> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar +MatrixBase<Derived>::trace() const +{ + return derived().diagonal().sum(); +} + +} // end namespace Eigen + +#endif // EIGEN_REDUX_H |