summaryrefslogtreecommitdiff
path: root/Eigen/src/SparseCore/SparseAssign.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/SparseCore/SparseAssign.h')
-rw-r--r--Eigen/src/SparseCore/SparseAssign.h270
1 files changed, 270 insertions, 0 deletions
diff --git a/Eigen/src/SparseCore/SparseAssign.h b/Eigen/src/SparseCore/SparseAssign.h
new file mode 100644
index 0000000..905485c
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseAssign.h
@@ -0,0 +1,270 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEASSIGN_H
+#define EIGEN_SPARSEASSIGN_H
+
+namespace Eigen {
+
+template<typename Derived>
+template<typename OtherDerived>
+Derived& SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
+{
+ internal::call_assignment_no_alias(derived(), other.derived());
+ return derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+Derived& SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
+{
+ // TODO use the evaluator mechanism
+ other.evalTo(derived());
+ return derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+inline Derived& SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived>& other)
+{
+ // by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine
+ internal::Assignment<Derived,OtherDerived,internal::assign_op<Scalar,typename OtherDerived::Scalar> >
+ ::run(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
+ return derived();
+}
+
+template<typename Derived>
+inline Derived& SparseMatrixBase<Derived>::operator=(const Derived& other)
+{
+ internal::call_assignment_no_alias(derived(), other.derived());
+ return derived();
+}
+
+namespace internal {
+
+template<>
+struct storage_kind_to_evaluator_kind<Sparse> {
+ typedef IteratorBased Kind;
+};
+
+template<>
+struct storage_kind_to_shape<Sparse> {
+ typedef SparseShape Shape;
+};
+
+struct Sparse2Sparse {};
+struct Sparse2Dense {};
+
+template<> struct AssignmentKind<SparseShape, SparseShape> { typedef Sparse2Sparse Kind; };
+template<> struct AssignmentKind<SparseShape, SparseTriangularShape> { typedef Sparse2Sparse Kind; };
+template<> struct AssignmentKind<DenseShape, SparseShape> { typedef Sparse2Dense Kind; };
+template<> struct AssignmentKind<DenseShape, SparseTriangularShape> { typedef Sparse2Dense Kind; };
+
+
+template<typename DstXprType, typename SrcXprType>
+void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src)
+{
+ typedef typename DstXprType::Scalar Scalar;
+ typedef internal::evaluator<DstXprType> DstEvaluatorType;
+ typedef internal::evaluator<SrcXprType> SrcEvaluatorType;
+
+ SrcEvaluatorType srcEvaluator(src);
+
+ const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit);
+ const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols();
+ if ((!transpose) && src.isRValue())
+ {
+ // eval without temporary
+ dst.resize(src.rows(), src.cols());
+ dst.setZero();
+ dst.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2));
+ for (Index j=0; j<outerEvaluationSize; ++j)
+ {
+ dst.startVec(j);
+ for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it)
+ {
+ Scalar v = it.value();
+ dst.insertBackByOuterInner(j,it.index()) = v;
+ }
+ }
+ dst.finalize();
+ }
+ else
+ {
+ // eval through a temporary
+ eigen_assert(( ((internal::traits<DstXprType>::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
+ (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) &&
+ "the transpose operation is supposed to be handled in SparseMatrix::operator=");
+
+ enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) };
+
+
+ DstXprType temp(src.rows(), src.cols());
+
+ temp.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2));
+ for (Index j=0; j<outerEvaluationSize; ++j)
+ {
+ temp.startVec(j);
+ for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it)
+ {
+ Scalar v = it.value();
+ temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
+ }
+ }
+ temp.finalize();
+
+ dst = temp.markAsRValue();
+ }
+}
+
+// Generic Sparse to Sparse assignment
+template< typename DstXprType, typename SrcXprType, typename Functor>
+struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
+ {
+ assign_sparse_to_sparse(dst.derived(), src.derived());
+ }
+};
+
+// Generic Sparse to Dense assignment
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
+struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense, Weak>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ if(internal::is_same<Functor,internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> >::value)
+ dst.setZero();
+
+ internal::evaluator<SrcXprType> srcEval(src);
+ resize_if_allowed(dst, src, func);
+ internal::evaluator<DstXprType> dstEval(dst);
+
+ const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags&RowMajorBit) ? src.rows() : src.cols();
+ for (Index j=0; j<outerEvaluationSize; ++j)
+ for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval,j); i; ++i)
+ func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value());
+ }
+};
+
+// Specialization for dense ?= dense +/- sparse and dense ?= sparse +/- dense
+template<typename DstXprType, typename Func1, typename Func2>
+struct assignment_from_dense_op_sparse
+{
+ template<typename SrcXprType, typename InitialFunc>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/)
+ {
+ #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN
+ EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN
+ #endif
+
+ call_assignment_no_alias(dst, src.lhs(), Func1());
+ call_assignment_no_alias(dst, src.rhs(), Func2());
+ }
+
+ // Specialization for dense1 = sparse + dense2; -> dense1 = dense2; dense1 += sparse;
+ template<typename Lhs, typename Rhs, typename Scalar>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type
+ run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_sum_op<Scalar,Scalar>, const Lhs, const Rhs> &src,
+ const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/)
+ {
+ #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN
+ EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN
+ #endif
+
+ // Apply the dense matrix first, then the sparse one.
+ call_assignment_no_alias(dst, src.rhs(), Func1());
+ call_assignment_no_alias(dst, src.lhs(), Func2());
+ }
+
+ // Specialization for dense1 = sparse - dense2; -> dense1 = -dense2; dense1 += sparse;
+ template<typename Lhs, typename Rhs, typename Scalar>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type
+ run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_difference_op<Scalar,Scalar>, const Lhs, const Rhs> &src,
+ const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/)
+ {
+ #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN
+ EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN
+ #endif
+
+ // Apply the dense matrix first, then the sparse one.
+ call_assignment_no_alias(dst, -src.rhs(), Func1());
+ call_assignment_no_alias(dst, src.lhs(), add_assign_op<typename DstXprType::Scalar,typename Lhs::Scalar>());
+ }
+};
+
+#define EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(ASSIGN_OP,BINOP,ASSIGN_OP2) \
+ template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> \
+ struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<Scalar,Scalar>, const Lhs, const Rhs>, internal::ASSIGN_OP<typename DstXprType::Scalar,Scalar>, \
+ Sparse2Dense, \
+ typename internal::enable_if< internal::is_same<typename internal::evaluator_traits<Lhs>::Shape,DenseShape>::value \
+ || internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type> \
+ : assignment_from_dense_op_sparse<DstXprType, internal::ASSIGN_OP<typename DstXprType::Scalar,typename Lhs::Scalar>, internal::ASSIGN_OP2<typename DstXprType::Scalar,typename Rhs::Scalar> > \
+ {}
+
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_sum_op,add_assign_op);
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_sum_op,add_assign_op);
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_sum_op,sub_assign_op);
+
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_difference_op,sub_assign_op);
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_difference_op,sub_assign_op);
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_difference_op,add_assign_op);
+
+
+// Specialization for "dst = dec.solve(rhs)"
+// NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error
+template<typename DstXprType, typename DecType, typename RhsType, typename Scalar>
+struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar,Scalar>, Sparse2Sparse>
+{
+ typedef Solve<DecType,RhsType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
+ {
+ Index dstRows = src.rows();
+ Index dstCols = src.cols();
+ if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
+ dst.resize(dstRows, dstCols);
+
+ src.dec()._solve_impl(src.rhs(), dst);
+ }
+};
+
+struct Diagonal2Sparse {};
+
+template<> struct AssignmentKind<SparseShape,DiagonalShape> { typedef Diagonal2Sparse Kind; };
+
+template< typename DstXprType, typename SrcXprType, typename Functor>
+struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse>
+{
+ typedef typename DstXprType::StorageIndex StorageIndex;
+ typedef typename DstXprType::Scalar Scalar;
+
+ template<int Options, typename AssignFunc>
+ static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const AssignFunc &func)
+ { dst.assignDiagonal(src.diagonal(), func); }
+
+ template<typename DstDerived>
+ static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
+ { dst.derived().diagonal() = src.diagonal(); }
+
+ template<typename DstDerived>
+ static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
+ { dst.derived().diagonal() += src.diagonal(); }
+
+ template<typename DstDerived>
+ static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
+ { dst.derived().diagonal() -= src.diagonal(); }
+};
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEASSIGN_H