diff options
Diffstat (limited to 'Eigen/src/SparseCore/SparseAssign.h')
-rw-r--r-- | Eigen/src/SparseCore/SparseAssign.h | 270 |
1 files changed, 270 insertions, 0 deletions
diff --git a/Eigen/src/SparseCore/SparseAssign.h b/Eigen/src/SparseCore/SparseAssign.h new file mode 100644 index 0000000..905485c --- /dev/null +++ b/Eigen/src/SparseCore/SparseAssign.h @@ -0,0 +1,270 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEASSIGN_H +#define EIGEN_SPARSEASSIGN_H + +namespace Eigen { + +template<typename Derived> +template<typename OtherDerived> +Derived& SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived> &other) +{ + internal::call_assignment_no_alias(derived(), other.derived()); + return derived(); +} + +template<typename Derived> +template<typename OtherDerived> +Derived& SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other) +{ + // TODO use the evaluator mechanism + other.evalTo(derived()); + return derived(); +} + +template<typename Derived> +template<typename OtherDerived> +inline Derived& SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived>& other) +{ + // by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine + internal::Assignment<Derived,OtherDerived,internal::assign_op<Scalar,typename OtherDerived::Scalar> > + ::run(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>()); + return derived(); +} + +template<typename Derived> +inline Derived& SparseMatrixBase<Derived>::operator=(const Derived& other) +{ + internal::call_assignment_no_alias(derived(), other.derived()); + return derived(); +} + +namespace internal { + +template<> +struct storage_kind_to_evaluator_kind<Sparse> { + typedef IteratorBased Kind; +}; + +template<> +struct storage_kind_to_shape<Sparse> { + typedef SparseShape Shape; +}; + +struct Sparse2Sparse {}; +struct Sparse2Dense {}; + +template<> struct AssignmentKind<SparseShape, SparseShape> { typedef Sparse2Sparse Kind; }; +template<> struct AssignmentKind<SparseShape, SparseTriangularShape> { typedef Sparse2Sparse Kind; }; +template<> struct AssignmentKind<DenseShape, SparseShape> { typedef Sparse2Dense Kind; }; +template<> struct AssignmentKind<DenseShape, SparseTriangularShape> { typedef Sparse2Dense Kind; }; + + +template<typename DstXprType, typename SrcXprType> +void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src) +{ + typedef typename DstXprType::Scalar Scalar; + typedef internal::evaluator<DstXprType> DstEvaluatorType; + typedef internal::evaluator<SrcXprType> SrcEvaluatorType; + + SrcEvaluatorType srcEvaluator(src); + + const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit); + const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols(); + if ((!transpose) && src.isRValue()) + { + // eval without temporary + dst.resize(src.rows(), src.cols()); + dst.setZero(); + dst.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2)); + for (Index j=0; j<outerEvaluationSize; ++j) + { + dst.startVec(j); + for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) + { + Scalar v = it.value(); + dst.insertBackByOuterInner(j,it.index()) = v; + } + } + dst.finalize(); + } + else + { + // eval through a temporary + eigen_assert(( ((internal::traits<DstXprType>::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) || + (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) && + "the transpose operation is supposed to be handled in SparseMatrix::operator="); + + enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) }; + + + DstXprType temp(src.rows(), src.cols()); + + temp.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2)); + for (Index j=0; j<outerEvaluationSize; ++j) + { + temp.startVec(j); + for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) + { + Scalar v = it.value(); + temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v; + } + } + temp.finalize(); + + dst = temp.markAsRValue(); + } +} + +// Generic Sparse to Sparse assignment +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse> +{ + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) + { + assign_sparse_to_sparse(dst.derived(), src.derived()); + } +}; + +// Generic Sparse to Dense assignment +template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak> +struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense, Weak> +{ + static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) + { + if(internal::is_same<Functor,internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> >::value) + dst.setZero(); + + internal::evaluator<SrcXprType> srcEval(src); + resize_if_allowed(dst, src, func); + internal::evaluator<DstXprType> dstEval(dst); + + const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags&RowMajorBit) ? src.rows() : src.cols(); + for (Index j=0; j<outerEvaluationSize; ++j) + for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval,j); i; ++i) + func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value()); + } +}; + +// Specialization for dense ?= dense +/- sparse and dense ?= sparse +/- dense +template<typename DstXprType, typename Func1, typename Func2> +struct assignment_from_dense_op_sparse +{ + template<typename SrcXprType, typename InitialFunc> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/) + { + #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN + EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN + #endif + + call_assignment_no_alias(dst, src.lhs(), Func1()); + call_assignment_no_alias(dst, src.rhs(), Func2()); + } + + // Specialization for dense1 = sparse + dense2; -> dense1 = dense2; dense1 += sparse; + template<typename Lhs, typename Rhs, typename Scalar> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type + run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_sum_op<Scalar,Scalar>, const Lhs, const Rhs> &src, + const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/) + { + #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN + EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN + #endif + + // Apply the dense matrix first, then the sparse one. + call_assignment_no_alias(dst, src.rhs(), Func1()); + call_assignment_no_alias(dst, src.lhs(), Func2()); + } + + // Specialization for dense1 = sparse - dense2; -> dense1 = -dense2; dense1 += sparse; + template<typename Lhs, typename Rhs, typename Scalar> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type + run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_difference_op<Scalar,Scalar>, const Lhs, const Rhs> &src, + const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/) + { + #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN + EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN + #endif + + // Apply the dense matrix first, then the sparse one. + call_assignment_no_alias(dst, -src.rhs(), Func1()); + call_assignment_no_alias(dst, src.lhs(), add_assign_op<typename DstXprType::Scalar,typename Lhs::Scalar>()); + } +}; + +#define EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(ASSIGN_OP,BINOP,ASSIGN_OP2) \ + template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> \ + struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<Scalar,Scalar>, const Lhs, const Rhs>, internal::ASSIGN_OP<typename DstXprType::Scalar,Scalar>, \ + Sparse2Dense, \ + typename internal::enable_if< internal::is_same<typename internal::evaluator_traits<Lhs>::Shape,DenseShape>::value \ + || internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type> \ + : assignment_from_dense_op_sparse<DstXprType, internal::ASSIGN_OP<typename DstXprType::Scalar,typename Lhs::Scalar>, internal::ASSIGN_OP2<typename DstXprType::Scalar,typename Rhs::Scalar> > \ + {} + +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_sum_op,add_assign_op); +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_sum_op,add_assign_op); +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_sum_op,sub_assign_op); + +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_difference_op,sub_assign_op); +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_difference_op,sub_assign_op); +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_difference_op,add_assign_op); + + +// Specialization for "dst = dec.solve(rhs)" +// NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error +template<typename DstXprType, typename DecType, typename RhsType, typename Scalar> +struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar,Scalar>, Sparse2Sparse> +{ + typedef Solve<DecType,RhsType> SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + src.dec()._solve_impl(src.rhs(), dst); + } +}; + +struct Diagonal2Sparse {}; + +template<> struct AssignmentKind<SparseShape,DiagonalShape> { typedef Diagonal2Sparse Kind; }; + +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse> +{ + typedef typename DstXprType::StorageIndex StorageIndex; + typedef typename DstXprType::Scalar Scalar; + + template<int Options, typename AssignFunc> + static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const AssignFunc &func) + { dst.assignDiagonal(src.diagonal(), func); } + + template<typename DstDerived> + static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) + { dst.derived().diagonal() = src.diagonal(); } + + template<typename DstDerived> + static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) + { dst.derived().diagonal() += src.diagonal(); } + + template<typename DstDerived> + static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) + { dst.derived().diagonal() -= src.diagonal(); } +}; +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPARSEASSIGN_H |