diff options
Diffstat (limited to 'glm-master/glm/gtx/pca.inl')
-rw-r--r-- | glm-master/glm/gtx/pca.inl | 343 |
1 files changed, 343 insertions, 0 deletions
diff --git a/glm-master/glm/gtx/pca.inl b/glm-master/glm/gtx/pca.inl new file mode 100644 index 0000000..d5a24b7 --- /dev/null +++ b/glm-master/glm/gtx/pca.inl @@ -0,0 +1,343 @@ +/// @ref gtx_pca + +#ifndef GLM_HAS_CXX11_STL +#include <algorithm> +#else +#include <utility> +#endif + +namespace glm { + + + template<length_t D, typename T, qualifier Q> + GLM_INLINE mat<D, D, T, Q> computeCovarianceMatrix(vec<D, T, Q> const* v, size_t n) + { + return computeCovarianceMatrix<D, T, Q, vec<D, T, Q> const*>(v, v + n); + } + + + template<length_t D, typename T, qualifier Q> + GLM_INLINE mat<D, D, T, Q> computeCovarianceMatrix(vec<D, T, Q> const* v, size_t n, vec<D, T, Q> const& c) + { + return computeCovarianceMatrix<D, T, Q, vec<D, T, Q> const*>(v, v + n, c); + } + + + template<length_t D, typename T, qualifier Q, typename I> + GLM_FUNC_DECL mat<D, D, T, Q> computeCovarianceMatrix(I const& b, I const& e) + { + glm::mat<D, D, T, Q> m(0); + + size_t cnt = 0; + for(I i = b; i != e; i++) + { + vec<D, T, Q> const& v = *i; + for(length_t x = 0; x < D; ++x) + for(length_t y = 0; y < D; ++y) + m[x][y] += static_cast<T>(v[x] * v[y]); + cnt++; + } + if(cnt > 0) + m /= static_cast<T>(cnt); + + return m; + } + + + template<length_t D, typename T, qualifier Q, typename I> + GLM_FUNC_DECL mat<D, D, T, Q> computeCovarianceMatrix(I const& b, I const& e, vec<D, T, Q> const& c) + { + glm::mat<D, D, T, Q> m(0); + glm::vec<D, T, Q> v; + + size_t cnt = 0; + for(I i = b; i != e; i++) + { + v = *i - c; + for(length_t x = 0; x < D; ++x) + for(length_t y = 0; y < D; ++y) + m[x][y] += static_cast<T>(v[x] * v[y]); + cnt++; + } + if(cnt > 0) + m /= static_cast<T>(cnt); + + return m; + } + + namespace _internal_ + { + + template<typename T> + GLM_INLINE T transferSign(T const& v, T const& s) + { + return ((s) >= 0 ? glm::abs(v) : -glm::abs(v)); + } + + template<typename T> + GLM_INLINE T pythag(T const& a, T const& b) { + static const T epsilon = static_cast<T>(0.0000001); + T absa = glm::abs(a); + T absb = glm::abs(b); + if(absa > absb) { + absb /= absa; + absb *= absb; + return absa * glm::sqrt(static_cast<T>(1) + absb); + } + if(glm::equal<T>(absb, 0, epsilon)) return static_cast<T>(0); + absa /= absb; + absa *= absa; + return absb * glm::sqrt(static_cast<T>(1) + absa); + } + + } + + template<length_t D, typename T, qualifier Q> + GLM_FUNC_DECL unsigned int findEigenvaluesSymReal + ( + mat<D, D, T, Q> const& covarMat, + vec<D, T, Q>& outEigenvalues, + mat<D, D, T, Q>& outEigenvectors + ) + { + using _internal_::transferSign; + using _internal_::pythag; + + T a[D * D]; // matrix -- input and workspace for algorithm (will be changed inplace) + T d[D]; // diagonal elements + T e[D]; // off-diagonal elements + + for(length_t r = 0; r < D; r++) + for(length_t c = 0; c < D; c++) + a[(r) * D + (c)] = covarMat[c][r]; + + // 1. Householder reduction. + length_t l, k, j, i; + T scale, hh, h, g, f; + static const T epsilon = static_cast<T>(0.0000001); + + for(i = D; i >= 2; i--) + { + l = i - 1; + h = scale = 0; + if(l > 1) + { + for(k = 1; k <= l; k++) + { + scale += glm::abs(a[(i - 1) * D + (k - 1)]); + } + if(glm::equal<T>(scale, 0, epsilon)) + { + e[i - 1] = a[(i - 1) * D + (l - 1)]; + } + else + { + for(k = 1; k <= l; k++) + { + a[(i - 1) * D + (k - 1)] /= scale; + h += a[(i - 1) * D + (k - 1)] * a[(i - 1) * D + (k - 1)]; + } + f = a[(i - 1) * D + (l - 1)]; + g = ((f >= 0) ? -glm::sqrt(h) : glm::sqrt(h)); + e[i - 1] = scale * g; + h -= f * g; + a[(i - 1) * D + (l - 1)] = f - g; + f = 0; + for(j = 1; j <= l; j++) + { + a[(j - 1) * D + (i - 1)] = a[(i - 1) * D + (j - 1)] / h; + g = 0; + for(k = 1; k <= j; k++) + { + g += a[(j - 1) * D + (k - 1)] * a[(i - 1) * D + (k - 1)]; + } + for(k = j + 1; k <= l; k++) + { + g += a[(k - 1) * D + (j - 1)] * a[(i - 1) * D + (k - 1)]; + } + e[j - 1] = g / h; + f += e[j - 1] * a[(i - 1) * D + (j - 1)]; + } + hh = f / (h + h); + for(j = 1; j <= l; j++) + { + f = a[(i - 1) * D + (j - 1)]; + e[j - 1] = g = e[j - 1] - hh * f; + for(k = 1; k <= j; k++) + { + a[(j - 1) * D + (k - 1)] -= (f * e[k - 1] + g * a[(i - 1) * D + (k - 1)]); + } + } + } + } + else + { + e[i - 1] = a[(i - 1) * D + (l - 1)]; + } + d[i - 1] = h; + } + d[0] = 0; + e[0] = 0; + for(i = 1; i <= D; i++) + { + l = i - 1; + if(!glm::equal<T>(d[i - 1], 0, epsilon)) + { + for(j = 1; j <= l; j++) + { + g = 0; + for(k = 1; k <= l; k++) + { + g += a[(i - 1) * D + (k - 1)] * a[(k - 1) * D + (j - 1)]; + } + for(k = 1; k <= l; k++) + { + a[(k - 1) * D + (j - 1)] -= g * a[(k - 1) * D + (i - 1)]; + } + } + } + d[i - 1] = a[(i - 1) * D + (i - 1)]; + a[(i - 1) * D + (i - 1)] = 1; + for(j = 1; j <= l; j++) + { + a[(j - 1) * D + (i - 1)] = a[(i - 1) * D + (j - 1)] = 0; + } + } + + // 2. Calculation of eigenvalues and eigenvectors (QL algorithm) + length_t m, iter; + T s, r, p, dd, c, b; + const length_t MAX_ITER = 30; + + for(i = 2; i <= D; i++) + { + e[i - 2] = e[i - 1]; + } + e[D - 1] = 0; + + for(l = 1; l <= D; l++) + { + iter = 0; + do + { + for(m = l; m <= D - 1; m++) + { + dd = glm::abs(d[m - 1]) + glm::abs(d[m - 1 + 1]); + if(glm::equal<T>(glm::abs(e[m - 1]) + dd, dd, epsilon)) + break; + } + if(m != l) + { + if(iter++ == MAX_ITER) + { + return 0; // Too many iterations in FindEigenvalues + } + g = (d[l - 1 + 1] - d[l - 1]) / (2 * e[l - 1]); + r = pythag<T>(g, 1); + g = d[m - 1] - d[l - 1] + e[l - 1] / (g + transferSign(r, g)); + s = c = 1; + p = 0; + for(i = m - 1; i >= l; i--) + { + f = s * e[i - 1]; + b = c * e[i - 1]; + e[i - 1 + 1] = r = pythag(f, g); + if(glm::equal<T>(r, 0, epsilon)) + { + d[i - 1 + 1] -= p; + e[m - 1] = 0; + break; + } + s = f / r; + c = g / r; + g = d[i - 1 + 1] - p; + r = (d[i - 1] - g) * s + 2 * c * b; + d[i - 1 + 1] = g + (p = s * r); + g = c * r - b; + for(k = 1; k <= D; k++) + { + f = a[(k - 1) * D + (i - 1 + 1)]; + a[(k - 1) * D + (i - 1 + 1)] = s * a[(k - 1) * D + (i - 1)] + c * f; + a[(k - 1) * D + (i - 1)] = c * a[(k - 1) * D + (i - 1)] - s * f; + } + } + if(glm::equal<T>(r, 0, epsilon) && (i >= l)) + continue; + d[l - 1] -= p; + e[l - 1] = g; + e[m - 1] = 0; + } + } while(m != l); + } + + // 3. output + for(i = 0; i < D; i++) + outEigenvalues[i] = d[i]; + for(i = 0; i < D; i++) + for(j = 0; j < D; j++) + outEigenvectors[i][j] = a[(j) * D + (i)]; + + return D; + } + + template<typename T, qualifier Q> + GLM_INLINE void sortEigenvalues(vec<2, T, Q>& eigenvalues, mat<2, 2, T, Q>& eigenvectors) + { + if (eigenvalues[0] < eigenvalues[1]) + { + std::swap(eigenvalues[0], eigenvalues[1]); + std::swap(eigenvectors[0], eigenvectors[1]); + } + } + + template<typename T, qualifier Q> + GLM_INLINE void sortEigenvalues(vec<3, T, Q>& eigenvalues, mat<3, 3, T, Q>& eigenvectors) + { + if (eigenvalues[0] < eigenvalues[1]) + { + std::swap(eigenvalues[0], eigenvalues[1]); + std::swap(eigenvectors[0], eigenvectors[1]); + } + if (eigenvalues[0] < eigenvalues[2]) + { + std::swap(eigenvalues[0], eigenvalues[2]); + std::swap(eigenvectors[0], eigenvectors[2]); + } + if (eigenvalues[1] < eigenvalues[2]) + { + std::swap(eigenvalues[1], eigenvalues[2]); + std::swap(eigenvectors[1], eigenvectors[2]); + } + } + + template<typename T, qualifier Q> + GLM_INLINE void sortEigenvalues(vec<4, T, Q>& eigenvalues, mat<4, 4, T, Q>& eigenvectors) + { + if (eigenvalues[0] < eigenvalues[2]) + { + std::swap(eigenvalues[0], eigenvalues[2]); + std::swap(eigenvectors[0], eigenvectors[2]); + } + if (eigenvalues[1] < eigenvalues[3]) + { + std::swap(eigenvalues[1], eigenvalues[3]); + std::swap(eigenvectors[1], eigenvectors[3]); + } + if (eigenvalues[0] < eigenvalues[1]) + { + std::swap(eigenvalues[0], eigenvalues[1]); + std::swap(eigenvectors[0], eigenvectors[1]); + } + if (eigenvalues[2] < eigenvalues[3]) + { + std::swap(eigenvalues[2], eigenvalues[3]); + std::swap(eigenvectors[2], eigenvectors[3]); + } + if (eigenvalues[1] < eigenvalues[2]) + { + std::swap(eigenvalues[1], eigenvalues[2]); + std::swap(eigenvectors[1], eigenvectors[2]); + } + } + +}//namespace glm |