summaryrefslogtreecommitdiff
path: root/src/ocean/ocean_alt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/ocean/ocean_alt.cpp')
-rw-r--r--src/ocean/ocean_alt.cpp306
1 files changed, 306 insertions, 0 deletions
diff --git a/src/ocean/ocean_alt.cpp b/src/ocean/ocean_alt.cpp
new file mode 100644
index 0000000..4dbf767
--- /dev/null
+++ b/src/ocean/ocean_alt.cpp
@@ -0,0 +1,306 @@
+#include "ocean_alt.h"
+#include <iostream>
+
+
+ocean_alt::ocean_alt()
+{
+ // to be used for efficiency during fft
+ std::cout << "hello" << std::endl;
+ init_wave_index_constants();
+
+}
+
+// initializes static constants (aka they are not time dependent)
+void ocean_alt::init_wave_index_constants(){
+
+ for (int i=0; i<N; i++){
+ Eigen::Vector2i m_n = index_1d_to_2d(i);
+ int n_prime = m_n[0];
+ int m_prime = m_n[1];
+
+ Eigen::Vector2d k = get_k_vector(n_prime, m_prime);
+ Eigen::Vector2d k_conj = get_k_vector(-n_prime, m_prime);
+
+
+ // store h0'(n,m) and w'(n,m) for every index, to be used for later
+ Eigen::Vector2d h0_prime = h_0_prime(k);
+
+ // conjugate of a+bi is a-bi
+ Eigen::Vector2d h0_prime_conj = h_0_prime(k_conj);
+ h0_prime_conj = Eigen::Vector2d(h0_prime_conj[0], -h0_prime_conj[1]);
+
+ double w_prime = omega_prime(k);
+
+ // populate map to be used for later
+ WaveIndexConstant wave_const;
+ wave_const.h0_prime = h0_prime;
+ wave_const.h0_prime_conj = h0_prime_conj;
+ wave_const.w_prime = w_prime;
+ wave_const.base_horiz_pos = get_horiz_pos(i);
+ wave_const.k_vector = k;
+
+ m_waveIndexConstants[i] = wave_const;
+
+ // initialize m_current_h to be h0 for now
+ m_current_h.push_back(h0_prime);
+ m_displacements.push_back(Eigen::Vector2d(0.0, 0.0));
+ m_slopes.push_back(Eigen::Vector2d(0.0, 0.0));
+ m_normals.push_back(Eigen::Vector3f(0.0, 1.0, 0.0));
+
+ }
+}
+
+
+// fast fourier transform at time t
+void ocean_alt::fft_prime(double t){
+
+ // FFT
+ std::vector<Eigen::Vector2d> h_tildas = std::vector<Eigen::Vector2d>();
+
+ // find each h_tilda at each index, to be used for next for loop
+ for (int i=0; i<N; i++){
+ Eigen::Vector2d h_t_prime = h_prime_t(i, t); // vector(real, imag)
+
+ h_tildas.emplace_back(h_t_prime);
+ }
+
+ // for each position in grid, sum up amplitudes dependng on that position
+ for (int i=0; i<N; i++){
+ Eigen::Vector2d x_vector = m_waveIndexConstants[i].base_horiz_pos;
+ m_current_h[i] = Eigen::Vector2d(0.0, 0.0);
+ m_displacements[i] = Eigen::Vector2d(0.0, 0.0);
+ m_slopes[i] = Eigen::Vector2d(0.0, 0.0);
+
+
+
+ for (int j = 0; j < N; j++){
+ Eigen::Vector2d k_vector = m_waveIndexConstants[j].k_vector;
+ Eigen::Vector2d h_tilda_prime = h_tildas[j]; // vector(real, imag)
+
+
+ // add x vector and k vector as imaginary numbers
+ double imag_xk_sum = x_vector.dot(k_vector);
+ Eigen::Vector2d exp = complex_exp(imag_xk_sum); // vector(real, imag)
+
+ double real_comp = h_tilda_prime[0]*exp[0] - h_tilda_prime[1]*exp[1];
+ double imag_comp = h_tilda_prime[0]*exp[1] + h_tilda_prime[1]*exp[0];
+
+ m_current_h[i] += Eigen::Vector2d(real_comp, imag_comp);
+
+ Eigen::Vector2d k_normalized = k_vector.normalized();
+
+ m_displacements[i] += k_normalized*imag_comp;
+ m_slopes[i] += k_vector*imag_comp;
+
+ }
+ }
+
+}
+
+// time dependent calculation of h'(n,m,t)
+Eigen::Vector2d ocean_alt::h_prime_t(int i, double t){
+ Eigen::Vector2d h0_prime = m_waveIndexConstants[i].h0_prime; // vector(real, imag)
+ Eigen::Vector2d h0_prime_conj = m_waveIndexConstants[i].h0_prime_conj; // vector(real, imag)
+ double w_prime = m_waveIndexConstants[i].w_prime;
+
+ Eigen::Vector2d pos_complex_exp = complex_exp(w_prime*t); // vector(real, imag)
+ Eigen::Vector2d neg_complex_exp = complex_exp(-w_prime*t); // vector(real, imag)
+
+ // now multiply our four vector(real, imag) out
+
+ double real_comp =
+ h0_prime[0]*pos_complex_exp[0]
+ - h0_prime[1]*pos_complex_exp[1]
+ + h0_prime_conj[0]*neg_complex_exp[0]
+ + h0_prime_conj[1]*neg_complex_exp[1];
+
+ double imag_comp =
+ h0_prime[0]*pos_complex_exp[1]
+ + h0_prime[1]*pos_complex_exp[0]
+ + h0_prime_conj[0]*neg_complex_exp[1]
+ - h0_prime_conj[1]*neg_complex_exp[0];
+
+
+
+ return Eigen::Vector2d(real_comp, imag_comp);
+}
+
+double ocean_alt::omega_prime(Eigen::Vector2d k){
+ // calculate omega^4 first to prevent sqrts
+ double w = sqrt(gravity*k.norm());
+
+ return w;
+}
+
+Eigen::Vector2d ocean_alt::h_0_prime(Eigen::Vector2d k){
+ double Ph_prime = phillips_prime(k);
+ std::pair<double,double> randoms = sample_complex_gaussian();
+ double random_r = randoms.first;
+ double random_i = randoms.second;
+
+ // seperate real and imag products
+ double coeff = 0.707106781187 * sqrt(Ph_prime);
+ double real_comp = coeff*random_r;
+ double imag_comp = coeff*random_i;
+
+ return Eigen::Vector2d(real_comp, imag_comp);
+}
+
+
+double ocean_alt::phillips_prime(Eigen::Vector2d k){
+ double k_mag = k.norm();
+
+ k.normalize();
+ double dot_prod = k.dot(omega_wind);
+
+ double output = 0.0;
+ // l = 1
+ if (k_mag < .0001) return 0.0;
+
+ if (k_mag > 1.0){
+
+ output = A*exp(-(k_mag*k_mag))*dot_prod*dot_prod/(k_mag*k_mag*k_mag*k_mag);
+ } else {
+ output = A*exp(-1.0/(k_mag*L*k_mag*L))*dot_prod*dot_prod/(k_mag*k_mag*k_mag*k_mag);
+
+ }
+
+
+
+ return output;
+}
+
+Eigen::Vector2d ocean_alt::get_k_vector(int n_prime, int m_prime){
+ double n_ = (double)n_prime;
+ double m_ = (double)m_prime;
+ double N_ = (double)num_rows;
+ double M_ = (double)num_cols;
+
+ double k_x = (2.0*M_PI*n_ - M_PI*N_)/Lx;
+ double k_z = (2.0*M_PI*m_ - M_PI*M_)/Lz;
+
+ return Eigen::Vector2d(k_x, k_z);
+}
+
+Eigen::Vector2d ocean_alt::get_horiz_pos(int i){
+ Eigen::Vector2i m_n = index_1d_to_2d(i);
+ double n_prime = (double)m_n[0];
+ double m_prime = (double)m_n[1];
+ double N_ = (double)num_rows;
+ double M_ = (double)num_cols;
+
+
+ double x = (n_prime-.5*N_)*Lx / N_;
+ double z = (m_prime-.5*M_)*Lz / M_;
+
+
+
+ return Eigen::Vector2d(x, z);
+}
+
+
+Eigen::Vector2i ocean_alt::index_1d_to_2d(int i){
+ int row = i/num_rows; // n'
+ int col = i%num_rows; // m'
+
+ return Eigen::Vector2i(row, col);
+
+}
+
+std::pair<double,double> ocean_alt::sample_complex_gaussian(){
+ double uniform_1 = (double)rand() / (RAND_MAX);
+ double uniform_2 = (double)rand() / (RAND_MAX);
+
+ // set a lower bound on zero to avoid undefined log(0)
+ if (uniform_1 == 0)
+ {
+ uniform_1 = 1e-10;
+ }
+ if (uniform_2 == 0)
+ {
+ uniform_2 = 1e-10;
+ }
+
+ // real and imaginary parts of the complex number
+ double real = sqrt(-2 * log(uniform_1)) * cos(2 * M_PI * uniform_2);
+ double imag = sqrt(-2 * log(uniform_1)) * sin(2 * M_PI * uniform_2);
+
+ return std::make_pair(real, imag);
+}
+
+Eigen::Vector2d ocean_alt::complex_exp(double exponent){
+ double real = cos(exponent);
+ double imag = sin(exponent);
+
+ return Eigen::Vector2d(real, imag);
+}
+
+std::vector<Eigen::Vector3f> ocean_alt::get_vertices()
+{
+ std::vector<Eigen::Vector3f> vertices = std::vector<Eigen::Vector3f>();
+ for (int i = 0; i < N; i++){
+ Eigen::Vector2d horiz_pos = spacing*m_waveIndexConstants[i].base_horiz_pos;
+ Eigen::Vector2d amplitude = m_current_h[i];
+ float height = amplitude[0];
+
+ Eigen::Vector2d slope = m_slopes[i] * .3f;
+ Eigen::Vector3f s = Eigen::Vector3f(-slope[0], 0.0, -slope[1]);
+ Eigen::Vector3f y = Eigen::Vector3f(0.0, 1.0, 0.0);
+
+ float xs = 1.f + s[0]*s[0];
+ float ys = 1.f + s[1]*s[1];
+ float zs = 1.f + s[2]*s[2];
+
+ Eigen::Vector3f diff = y - s;
+ Eigen::Vector3f norm = Eigen::Vector3f(diff[0]/ sqrt(xs), diff[1]/ sqrt(ys), diff[2]/sqrt(zs));
+
+
+
+
+
+ //if (i==6) std::cout << amplitude[0] << std::endl;
+
+ // calculate displacement
+ Eigen::Vector2d disp = lambda*m_displacements[i];
+
+ //
+
+
+ // for final vertex position, use the real number component of amplitude vector
+ vertices.push_back(Eigen::Vector3f(horiz_pos[0] + disp[0], height, horiz_pos[1] + disp[1]));
+ m_normals[i] = norm.normalized();//Eigen::Vector3f(-slope[0], 1.0, -slope[1]).normalized();
+ //std::cout << "normal: " << m_normals[i] << std::endl;
+
+ }
+ return vertices;
+}
+
+std::vector<Eigen::Vector3f> ocean_alt::getNormals(){
+ return m_normals;
+}
+
+std::vector<Eigen::Vector3i> ocean_alt::get_faces()
+{
+ // connect the vertices into faces
+ std::vector<Eigen::Vector3i> faces = std::vector<Eigen::Vector3i>();
+ for (int i = 0; i < N; i++)
+ {
+ int x = i / num_rows;
+ int z = i % num_rows;
+
+ // connect the vertices into faces
+ if (x < num_rows - 1 && z < num_cols - 1)
+ {
+ int i1 = i;
+ int i2 = i + 1;
+ int i3 = i + num_rows;
+ int i4 = i + num_rows + 1;
+
+ faces.emplace_back(i2, i1, i3);
+ faces.emplace_back(i2, i3, i4);
+ faces.emplace_back(i1, i2, i3);
+ faces.emplace_back(i3, i2, i4);
+ }
+ }
+ return faces;
+}