From 7a8d0d8bc2572707c9d35006f30ea835c86954b0 Mon Sep 17 00:00:00 2001 From: sotech117 Date: Tue, 9 Apr 2024 03:14:17 -0400 Subject: first draft to generate waves --- Eigen/src/Core/PermutationMatrix.h | 605 +++++++++++++++++++++++++++++++++++++ 1 file changed, 605 insertions(+) create mode 100644 Eigen/src/Core/PermutationMatrix.h (limited to 'Eigen/src/Core/PermutationMatrix.h') diff --git a/Eigen/src/Core/PermutationMatrix.h b/Eigen/src/Core/PermutationMatrix.h new file mode 100644 index 0000000..69401bf --- /dev/null +++ b/Eigen/src/Core/PermutationMatrix.h @@ -0,0 +1,605 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2009-2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PERMUTATIONMATRIX_H +#define EIGEN_PERMUTATIONMATRIX_H + +namespace Eigen { + +namespace internal { + +enum PermPermProduct_t {PermPermProduct}; + +} // end namespace internal + +/** \class PermutationBase + * \ingroup Core_Module + * + * \brief Base class for permutations + * + * \tparam Derived the derived class + * + * This class is the base class for all expressions representing a permutation matrix, + * internally stored as a vector of integers. + * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix + * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have: + * \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f] + * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have: + * \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f] + * + * Permutation matrices are square and invertible. + * + * Notice that in addition to the member functions and operators listed here, there also are non-member + * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase) + * on either side. + * + * \sa class PermutationMatrix, class PermutationWrapper + */ +template +class PermutationBase : public EigenBase +{ + typedef internal::traits Traits; + typedef EigenBase Base; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + enum { + Flags = Traits::Flags, + RowsAtCompileTime = Traits::RowsAtCompileTime, + ColsAtCompileTime = Traits::ColsAtCompileTime, + MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = Traits::MaxColsAtCompileTime + }; + typedef typename Traits::StorageIndex StorageIndex; + typedef Matrix + DenseMatrixType; + typedef PermutationMatrix + PlainPermutationType; + typedef PlainPermutationType PlainObject; + using Base::derived; + typedef Inverse InverseReturnType; + typedef void Scalar; + #endif + + /** Copies the other permutation into *this */ + template + Derived& operator=(const PermutationBase& other) + { + indices() = other.indices(); + return derived(); + } + + /** Assignment from the Transpositions \a tr */ + template + Derived& operator=(const TranspositionsBase& tr) + { + setIdentity(tr.size()); + for(Index k=size()-1; k>=0; --k) + applyTranspositionOnTheRight(k,tr.coeff(k)); + return derived(); + } + + /** \returns the number of rows */ + inline EIGEN_DEVICE_FUNC Index rows() const { return Index(indices().size()); } + + /** \returns the number of columns */ + inline EIGEN_DEVICE_FUNC Index cols() const { return Index(indices().size()); } + + /** \returns the size of a side of the respective square matrix, i.e., the number of indices */ + inline EIGEN_DEVICE_FUNC Index size() const { return Index(indices().size()); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void evalTo(MatrixBase& other) const + { + other.setZero(); + for (Index i=0; i=0 && j>=0 && i=0 && j>=0 && i + void assignTranspose(const PermutationBase& other) + { + for (Index i=0; i + void assignProduct(const Lhs& lhs, const Rhs& rhs) + { + eigen_assert(lhs.cols() == rhs.rows()); + for (Index i=0; i + inline PlainPermutationType operator*(const PermutationBase& other) const + { return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); } + + /** \returns the product of a permutation with another inverse permutation. + * + * \note \blank \note_try_to_help_rvo + */ + template + inline PlainPermutationType operator*(const InverseImpl& other) const + { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); } + + /** \returns the product of an inverse permutation with another permutation. + * + * \note \blank \note_try_to_help_rvo + */ + template friend + inline PlainPermutationType operator*(const InverseImpl& other, const PermutationBase& perm) + { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); } + + /** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the permutation. + * + * This function is O(\c n) procedure allocating a buffer of \c n booleans. + */ + Index determinant() const + { + Index res = 1; + Index n = size(); + Matrix mask(n); + mask.fill(false); + Index r = 0; + while(r < n) + { + // search for the next seed + while(r=n) + break; + // we got one, let's follow it until we are back to the seed + Index k0 = r++; + mask.coeffRef(k0) = true; + for(Index k=indices().coeff(k0); k!=k0; k=indices().coeff(k)) + { + mask.coeffRef(k) = true; + res = -res; + } + } + return res; + } + + protected: + +}; + +namespace internal { +template +struct traits > + : traits > +{ + typedef PermutationStorage StorageKind; + typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; + typedef _StorageIndex StorageIndex; + typedef void Scalar; +}; +} + +/** \class PermutationMatrix + * \ingroup Core_Module + * + * \brief Permutation matrix + * + * \tparam SizeAtCompileTime the number of rows/cols, or Dynamic + * \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. + * \tparam _StorageIndex the integer type of the indices + * + * This class represents a permutation matrix, internally stored as a vector of integers. + * + * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix + */ +template +class PermutationMatrix : public PermutationBase > +{ + typedef PermutationBase Base; + typedef internal::traits Traits; + public: + + typedef const PermutationMatrix& Nested; + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + typedef typename Traits::StorageIndex StorageIndex; + #endif + + inline PermutationMatrix() + {} + + /** Constructs an uninitialized permutation matrix of given size. + */ + explicit inline PermutationMatrix(Index size) : m_indices(size) + { + eigen_internal_assert(size <= NumTraits::highest()); + } + + /** Copy constructor. */ + template + inline PermutationMatrix(const PermutationBase& other) + : m_indices(other.indices()) {} + + /** Generic constructor from expression of the indices. The indices + * array has the meaning that the permutations sends each integer i to indices[i]. + * + * \warning It is your responsibility to check that the indices array that you passes actually + * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the + * array's size. + */ + template + explicit inline PermutationMatrix(const MatrixBase& indices) : m_indices(indices) + {} + + /** Convert the Transpositions \a tr to a permutation matrix */ + template + explicit PermutationMatrix(const TranspositionsBase& tr) + : m_indices(tr.size()) + { + *this = tr; + } + + /** Copies the other permutation into *this */ + template + PermutationMatrix& operator=(const PermutationBase& other) + { + m_indices = other.indices(); + return *this; + } + + /** Assignment from the Transpositions \a tr */ + template + PermutationMatrix& operator=(const TranspositionsBase& tr) + { + return Base::operator=(tr.derived()); + } + + /** const version of indices(). */ + const IndicesType& indices() const { return m_indices; } + /** \returns a reference to the stored array representing the permutation. */ + IndicesType& indices() { return m_indices; } + + + /**** multiplication helpers to hopefully get RVO ****/ + +#ifndef EIGEN_PARSED_BY_DOXYGEN + template + PermutationMatrix(const InverseImpl& other) + : m_indices(other.derived().nestedExpression().size()) + { + eigen_internal_assert(m_indices.size() <= NumTraits::highest()); + StorageIndex end = StorageIndex(m_indices.size()); + for (StorageIndex i=0; i + PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs) + : m_indices(lhs.indices().size()) + { + Base::assignProduct(lhs,rhs); + } +#endif + + protected: + + IndicesType m_indices; +}; + + +namespace internal { +template +struct traits,_PacketAccess> > + : traits > +{ + typedef PermutationStorage StorageKind; + typedef Map, _PacketAccess> IndicesType; + typedef _StorageIndex StorageIndex; + typedef void Scalar; +}; +} + +template +class Map,_PacketAccess> + : public PermutationBase,_PacketAccess> > +{ + typedef PermutationBase Base; + typedef internal::traits Traits; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + typedef typename IndicesType::Scalar StorageIndex; + #endif + + inline Map(const StorageIndex* indicesPtr) + : m_indices(indicesPtr) + {} + + inline Map(const StorageIndex* indicesPtr, Index size) + : m_indices(indicesPtr,size) + {} + + /** Copies the other permutation into *this */ + template + Map& operator=(const PermutationBase& other) + { return Base::operator=(other.derived()); } + + /** Assignment from the Transpositions \a tr */ + template + Map& operator=(const TranspositionsBase& tr) + { return Base::operator=(tr.derived()); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** This is a special case of the templated operator=. Its purpose is to + * prevent a default operator= from hiding the templated operator=. + */ + Map& operator=(const Map& other) + { + m_indices = other.m_indices; + return *this; + } + #endif + + /** const version of indices(). */ + const IndicesType& indices() const { return m_indices; } + /** \returns a reference to the stored array representing the permutation. */ + IndicesType& indices() { return m_indices; } + + protected: + + IndicesType m_indices; +}; + +template class TranspositionsWrapper; +namespace internal { +template +struct traits > +{ + typedef PermutationStorage StorageKind; + typedef void Scalar; + typedef typename _IndicesType::Scalar StorageIndex; + typedef _IndicesType IndicesType; + enum { + RowsAtCompileTime = _IndicesType::SizeAtCompileTime, + ColsAtCompileTime = _IndicesType::SizeAtCompileTime, + MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime, + MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime, + Flags = 0 + }; +}; +} + +/** \class PermutationWrapper + * \ingroup Core_Module + * + * \brief Class to view a vector of integers as a permutation matrix + * + * \tparam _IndicesType the type of the vector of integer (can be any compatible expression) + * + * This class allows to view any vector expression of integers as a permutation matrix. + * + * \sa class PermutationBase, class PermutationMatrix + */ +template +class PermutationWrapper : public PermutationBase > +{ + typedef PermutationBase Base; + typedef internal::traits Traits; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + #endif + + inline PermutationWrapper(const IndicesType& indices) + : m_indices(indices) + {} + + /** const version of indices(). */ + const typename internal::remove_all::type& + indices() const { return m_indices; } + + protected: + + typename IndicesType::Nested m_indices; +}; + + +/** \returns the matrix with the permutation applied to the columns. + */ +template +EIGEN_DEVICE_FUNC +const Product +operator*(const MatrixBase &matrix, + const PermutationBase& permutation) +{ + return Product + (matrix.derived(), permutation.derived()); +} + +/** \returns the matrix with the permutation applied to the rows. + */ +template +EIGEN_DEVICE_FUNC +const Product +operator*(const PermutationBase &permutation, + const MatrixBase& matrix) +{ + return Product + (permutation.derived(), matrix.derived()); +} + + +template +class InverseImpl + : public EigenBase > +{ + typedef typename PermutationType::PlainPermutationType PlainPermutationType; + typedef internal::traits PermTraits; + protected: + InverseImpl() {} + public: + typedef Inverse InverseType; + using EigenBase >::derived; + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename PermutationType::DenseMatrixType DenseMatrixType; + enum { + RowsAtCompileTime = PermTraits::RowsAtCompileTime, + ColsAtCompileTime = PermTraits::ColsAtCompileTime, + MaxRowsAtCompileTime = PermTraits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = PermTraits::MaxColsAtCompileTime + }; + #endif + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void evalTo(MatrixBase& other) const + { + other.setZero(); + for (Index i=0; i friend + const Product + operator*(const MatrixBase& matrix, const InverseType& trPerm) + { + return Product(matrix.derived(), trPerm.derived()); + } + + /** \returns the matrix with the inverse permutation applied to the rows. + */ + template + const Product + operator*(const MatrixBase& matrix) const + { + return Product(derived(), matrix.derived()); + } +}; + +template +const PermutationWrapper MatrixBase::asPermutation() const +{ + return derived(); +} + +namespace internal { + +template<> struct AssignmentKind { typedef EigenBase2EigenBase Kind; }; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PERMUTATIONMATRIX_H -- cgit v1.2.3-70-g09d2