#version 330 core layout(location = 0) in vec3 position; // Position of the vertex layout(location = 1) in vec3 normal; // Normal of the vertex layout(location = 2) in vec3 texCoords; // Normal of the vertex uniform float depth = -3000.f; uniform float skyHeight = 500.f; uniform mat4 proj; uniform mat4 view; uniform mat4 model; uniform mat4 inverseView; //uniform float width; //uniform float height; // TODO: Pass in width and height as uniform uniform mat3 inverseTransposeModel; out vec3 normal_cameraSpace; out vec3 normal_worldSpace; out vec3 camera_worldSpace; out vec3 pos; out float intensity; out vec3 oldPosFlat; uniform vec2 widthBounds; uniform vec2 lengthBounds; vec3 moveToTopDown(vec3 p) { return vec3((p[0] - ((widthBounds[0] + widthBounds[1]) / 2)) / (widthBounds[1] - widthBounds[0]) * 2, -(p[2] - ((lengthBounds[0] + lengthBounds[1]) / 2)) * 2 / (lengthBounds[1] - lengthBounds[0]), 0.f); } vec4 refractToFloor(vec3 l, vec3 p, vec3 n, float d) { // Refracts incoming light direction l through normal n at point p until hits floor at depth d vec3 w_o = normalize(l); float cos_theta_i = dot(-w_o, n); float n_i = 1; float n_t = 1.33f; float determinant = 1.f - (pow((n_i / n_t), 2.f) * (1.f - pow(cos_theta_i, 2.f))); float r0 = pow((n_i - n_t) / (n_i + n_t), 2.f); // variable required to calculate probability of reflection float prob_to_refl = r0 + ((1 - r0) * pow((1 - cos_theta_i), 5.f)); if (determinant >= 0) { float cos_theta_t = sqrt(determinant); vec3 w_t = (n_i / n_t) * w_o + ((n_i / n_t) * cos_theta_i - cos_theta_t) * n; float dist = p.y - d; float depthScale = dist / w_t.y; vec3 groundContactPoint = -(w_t * depthScale) + p; return vec4(groundContactPoint, 1.f - prob_to_refl); } else { return vec4(0, 0, 0, 0); } } vec3 wrapGL(vec3 p) { float newX = p[0]; float newY = p[1]; newX = mod(newX + 1.f, 2.f) - 1.f; newY = mod(newY + 1.f, 2.f) - 1.f; return vec3(newX, newY, 0.f); } void main() { normal_cameraSpace = normalize(inverse(transpose(mat3(view))) * inverseTransposeModel * normal); camera_worldSpace = vec3(inverseView * vec4(0.f, 0.f, 0.f, 1.f)); normal_worldSpace = normal; pos = vec3(model * vec4(position, 1.f)); //vec3(model * vec4(objSpacePos, 1.f)); vec3 lightDir = -normalize(vec3(1, -1, 1)); gl_Position = proj * view * model * vec4(position, 1); // gl_Position = vec4((position[0] - ((widthBounds[0] + widthBounds[1]) / 2)) / (widthBounds[1] - widthBounds[0]) * 2, // (position[2] - ((lengthBounds[0] + lengthBounds[1]) / 2)) / (lengthBounds[1] - lengthBounds[0]) * 2, 0.f, 1.f); float newX = mod(int(position[0]), 3) - 1; float newY = mod(int(position[2]), 3) - 1; vec4 refractedPositionAndProb = refractToFloor(-lightDir, position, normal_worldSpace, depth); float waterMurkiness = .002f; gl_Position = vec4(newX, newY, 0.f, 1.f); intensity = refractedPositionAndProb[3] * clamp(dot(normal_worldSpace, lightDir), 0.f, 1.f) * exp(-length((position - vec3(refractedPositionAndProb))) * waterMurkiness); oldPosFlat = moveToTopDown(position); pos = moveToTopDown(vec3(refractedPositionAndProb)); gl_Position = vec4(pos, 1.f); }