#version 330 core out vec4 fragColor; in vec3 normal_cameraSpace; in vec3 camera_worldSpace; in vec3 normal_worldSpace; in vec3 pos; in vec3 refrPos; in float refrProb; in vec2 uv; in float matIor; uniform sampler2D texture_img; uniform int wire = 0; uniform float red = 1.0; uniform float green = 1.0; uniform float blue = 1.0; uniform float alpha = 1.0; uniform sampler2D sampler; uniform vec2 widthBounds; uniform vec2 lengthBounds; //uniform float test = 0; float rand(vec2 n) { return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453); } float rand(float n) { return fract(sin(n) * 43758.5453123); } float rand(vec4 n) { // vec2 first2 = vec2(n[0], n[1]); //// return 1.f; return rand(vec2(n[0] * rand(n[2]), n[1] * rand(n[3]))); } vec2 uvFromWorldPoint(vec3 point) { float u = (point.x - widthBounds[0]) / (widthBounds[1] - widthBounds[0]); float v = (point.z - lengthBounds[0]) / (lengthBounds[1] - lengthBounds[0]); return vec2(u, v); } void main() { // Do lighting in camera space vec3 lightDir = normalize(vec3(0, 0.5, 1)); lightDir = normalize(vec3(0.f, 3.f, 0.f) - pos); // float d = clamp(dot(normal_cameraSpace, lightDir), 0, 1); float d = clamp(dot(normal_worldSpace, lightDir), 0, 1); vec3 reflectedLight = lightDir - 2 * dot(lightDir, normal_worldSpace) * normal_worldSpace; vec3 posToCam = normalize(camera_worldSpace - pos); float spec = pow(dot(posToCam, reflectedLight), 2.f); // fragColor = texture(sampler, vec2(0.5f, 0.5f)); // fragColor = vec4(abs(pos.x / 160.f), pos.y, 0.f, 1.f); // fragColor = vec4(uv.y, uv.y, 0.f, 1.f); // fragColor = vec4(camera_worldSpace.x - pos[0], camera_worldSpace.y - pos[1], pos[2], 1.f); // fragColor = vec4(- pos[0], 0.f, 0.f, 1.f); // fragColor = vec4((pos - vec3(widthBounds[0], 0, lengthBounds[0])) / 5.f, 1.f); // fragColor = vec4(fragColor.x, 0.f, fragColor.z, 1.f); // fragColor = vec4(test, test, test, 1.f); vec2 refrUV = uvFromWorldPoint(refrPos); float beerAtt = exp(-length((pos - refrPos)) * 0.2f); // TODO: Make uniform vec4 diffuse = vec4(red * d, green * d, blue * d, 1.0f); vec4 specular = vec4(1, 1, 1, 1) * pow(spec, 10.f); // vec4 transmissive = vec4(vec3(refrUV, 1.f - refrUV.y), 1.f); float waterBlurriness = 0.f; vec2 refrUVBlurry = (1 - beerAtt) * vec2(rand(refrUV), rand(vec4(pos, d))) * waterBlurriness + refrUV; vec4 transmissive = texture(sampler, vec2(refrUVBlurry)); // refrProb *= beerAtt; fragColor = 0.75f * diffuse; // Diffuse fragColor += 0.6f * specular; // Specular TODO: Pass multiplications as uniforms. fragColor = clamp(fragColor, 0.f, 1.f); // Clamp fragColor *= (1 - ((beerAtt * refrProb) / 1.f)); fragColor += ((beerAtt * refrProb) / 1.5f) * transmissive; // fragColor = transmissive * refrProb; fragColor = vec4(vec3(fragColor), 1.5f); // Dividing refrProb by 2 just for heuristic. Want more phong to show through. // fragColor = clamp(fragColor, 0.f, 1.f); // fragColor = vec4(refrProb, 0.f, 0.f, 1.f); // TODO: ACTUAL LIGHTING MODEL SHOULD BE SOMETHING LIKE // VELOCITY * DIFFUSE // (1 - refrProb) * SPECULAR // refrProb * (BEER * TRANSMISSIVE + (1 - beerAtt) * VOLUME (which is somewhat diffuse too?)) // Transmissive shouldn't just get darker, but blurrier as beer attenuation lowers. // fragColor = texture(sampler, vec2(refrUV)); }