aboutsummaryrefslogtreecommitdiff
path: root/src/client/views/nodes/PhysicsBox/PhysicsSimulationTutorial.json
blob: 3015deaa420ffc6aaa790f2dfe74bde85a2425f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
{
  "freeWeight": {
    "question": "A 1kg weight is at rest on the ground. What are the magnitude and directions of the forces acting on the weight?",
    "steps": [
      {
        "description": "Forces",
        "content": "There are two forces acting on the weight: the force of gravity and the normal force.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Normal Force",
            "magnitude": 9.81,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": false
      },
      {
        "description": "Force of Gravity",
        "content": "The force of gravity acts in the negative y direction: 3π/2 rad. It has magnitude equal to m*g. We can approximate g as 9.81.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "Normal Force",
        "content": "The normal force acts in the positive y direction: π/2 rad. It has magnitude equal to m*g. We can approximate g as 9.81.",
        "forces": [
          {
            "description": "Normal Force",
            "magnitude": 9.81,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "All Forces",
        "content": "Combining all of the forces, we get the following free body diagram.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Normal Force",
            "magnitude": 9.81,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": true
      }
    ]
  },
  "pendulum": {
    "question": "A 1kg weight on a 300m rod of negligible mass is released from an angle 30 degrees offset from equilibrium. What are the magnitude and directions of the forces acting on the weight immediately after release? (Ignore air resistance)",
    "steps": [
      {
        "description": "Forces",
        "content": "There are two force acting on the weight: the force of gravity and the force of tension.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Tension",
            "magnitude": 8.5,
            "directionInDegrees": 60,
            "component": false
          }
        ],
        "showMagnitude": false
      },
      {
        "description": "Force of Gravity",
        "content": "The force of gravity acts in the negative y direction: 3π/2 rad. It has magnitude equal to m*g. We can approximate g as 9.81.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "Tension",
        "content": "The force of tension acts along the direction of the rod. The rod is 30 degrees offset from equilibrium, so the direction along the rod is 90-30=60 degrees. The tension force has two components—the component creating the centripetal force and the component canceling out the parallel component of gravity. The weight has just been released, so it has velocity 0, meaning the centripetal force is 0. Thus, the tension force only acts to cancel out the parallel component of gravity. Thus, the magnitude of tension is m*g*sin(60°)",
        "forces": [
          {
            "description": "Tension",
            "magnitude": 8.5,
            "directionInDegrees": 60,
            "component": false
          },
          {
            "description": "Gravity - Parallel Component",
            "magnitude": 8.5,
            "directionInDegrees": 240,
            "component": true
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "All Forces",
        "content": "Combining all of the forces, we get the following free body diagram.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Tension",
            "magnitude": 8.5,
            "directionInDegrees": 60,
            "component": false
          }
        ],
        "showMagnitude": true
      }
    ]
  },
  "inclinePlane": {
    "question": "There is a 1kg weight on an inclined plane. The plane is at an angle θ from the ground, and has a coefficient of static friction μ. The system is in equilibrium (the net force on the weight is 0). What are the magnitudes and directions of the forces acting on the weight?",
    "steps": [
      {
        "description": "Forces",
        "content": "There are three forces acting on the weight: the force of gravity, the normal force, and the force of static friction.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Normal Force",
            "magnitude": 8.817,
            "directionInDegrees": 64,
            "component": false
          },
          {
            "description": "Friction Force",
            "magnitude": 4.3,
            "directionInDegrees": 154,
            "component": false
          }
        ],
        "showMagnitude": false
      },
      {
        "description": "Force of Gravity",
        "content": "The force of gravity acts in the negative y direction: 3π/2 rad. It has magnitude equal to m*g. We can approximate g as 9.81.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "Normal Force",
        "content": "The normal force acts in the direction perpendicular to the incline plane: π/2-θ rad, where θ is the angle of the incline plane. The magnitude of the normal force is equal to m*g*cos(θ).",
        "forces": [
          {
            "description": "Normal Force",
            "magnitude": 8.817,
            "directionInDegrees": 64,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "Force of Static Friction",
        "content": "The force of static friction acts in the direction along the incline plane: π-θ rad, where θ is the angle of the incline plane. We can use the knowledge that the system is in equilibrium to solve for the magnitude of the force of static friction.",
        "forces": [
          {
            "description": "Friction Force",
            "magnitude": 4.3,
            "directionInDegrees": 154,
            "component": false
          }
        ],
        "showMagnitude": false
      },
      {
        "description": "Net X Force in Equilibrium",
        "content": "For the system to be in equilibrium, the sum of the x components of all forces must equal 0. The x component of the normal force is equal to m*g*cos(θ)*cos(π/2-θ), where θ is the angle of the incline plane. The x component of gravity is equal to 0. Since the net force in the x direction must be 0, we know the magnitude of the x component of the friction force is m*g*cos(θ)*cos(π/2-θ).",
        "forces": [
          {
            "description": "Normal Force - X Component",
            "magnitude": 3.87,
            "directionInDegrees": 0,
            "component": true
          },
          {
            "description": "Friction Force - X Component",
            "magnitude": 3.87,
            "directionInDegrees": 180,
            "component": true
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "Net Y Force Normal Force",
        "content": "For the system to be in equilibrium, the sum of the y components of all forces must equal 0. The y component of the normal force is equal to m*g*cos(θ)*sin(π/2-θ), where θ is the angle of the incline plane. The y component of gravity is equal to m*g. Since the net force in the x direction must be 0, we know the magnitude of the y component of the friction force is m*g-m*g*cos(θ)*sin(π/2-θ).",
        "forces": [
          {
            "description": "Normal Force - Y Component ",
            "magnitude": 7.92,
            "directionInDegrees": 90,
            "component": true
          },
          {
            "description": "Gravity - Y Component ",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": true
          },
          {
            "description": "Friction Force - Y Component ",
            "magnitude": 1.89,
            "directionInDegrees": 90,
            "component": true
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "Magnitude of Force of Friction",
        "content": "Combining the x and y components of the friction force, we get the magnitude of the friction force is equal to sqrt((m*g*cos(θ)*cos(π/2-θ))^2 + (m*g*cos(θ)*sin(π/2-θ)-m*g)^2).",
        "forces": [
          {
            "description": "Friction Force",
            "magnitude": 4.3,
            "directionInDegrees": 154,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "All Forces",
        "content": "Combining all of the forces, we get the following free body diagram.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Normal Force",
            "magnitude": 8.817,
            "directionInDegrees": 64,
            "component": false
          },
          {
            "description": "Friction Force",
            "magnitude": 4.3,
            "directionInDegrees": 154,
            "component": false
          }
        ],
        "showMagnitude": true
      }
    ]
  },
  "spring": {
    "question": "A 1kg weight is on a spring of negligible mass with rest length 200m and spring constant 0.5. What is the equilibrium spring length?",
    "steps": [
      {
        "description": "Forces",
        "content": "We can start by solving for the forces acting on the weight at any given point in time. There are two forces potentially acting on the weight: the force of gravity and the spring force. In equilibrium, these forces will be perfectly balanced.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Spring Force",
            "magnitude": 9.81,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": false
      },
      {
        "description": "Force of Gravity",
        "content": "The force of gravity acts in the negative y direction: 3π/2 rad. It has magnitude equal to m*g. We can approximate g as 9.81.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "Spring Force",
        "content": "The spring force acts in the negative y direction (3π/2 rad) if the spring is compressed. The spring force acts in the positive y direction (π/2 rad) if the spring is extended. Because the forces are perfectly balanced and gravity acts in the negative y direction, the spring force must act in the positive y direction and have the same magnitude as the force og gravity, m*g. We can approximate g as 9.81.",
        "forces": [
          {
            "description": "Spring Force",
            "magnitude": 9.81,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "Spring Force",
        "content": "We can use the spring force equation, Fs=kd to solve for the displacement such that Fs=mg. Setting them equal, we get mg=kd. Plugging in for the known values of m,g, and k, we get 1*9.81=0.5d. Solving for d, we get d=19.62 as the equilibrium starting displacement",
        "forces": [
          {
            "description": "Spring Force",
            "magnitude": 9.81,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": true
      }
    ]
  },
  "circular": {
    "question": "A 1kg weight is attached to a 100m rod of negligible mass. The weight is undergoing uniform circular motion with tangential velocity 40 m/s. What are the magnitude and directions of the forces acting on the weight? (Ignore air resistance)",
    "steps": [
      {
        "description": "Forces",
        "content": "There is one force acting on the weight: the centripetal force.",
        "forces": [
          {
            "description": "Centripetal Force",
            "magnitude": 16,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": false
      },
      {
        "description": "Centripetal Force",
        "content": "The centripetal force is always directed toward the center of the circle. The formula for solving for the magnitude of centripetal force for an object undergoing uniform circular motion is Fc=mv^2 / r. Plugging in for known values, we get Fc=1*(40^2)/100. Solving for this, we get Fc=16",
        "forces": [
          {
            "description": "Centripetal Force",
            "magnitude": 16,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": true
      }
    ]
  },
  "pulley": {
    "question": "A 1kg red weight is attached to a simple pulley with a rope of negligible mass. A 1.5kg blue weight is attached to the other end of the simple pulley. What are the forces acting on the red weight?",
    "steps": [
      {
        "description": "Forces",
        "content": "There are two force acting on the red weight: the force of gravity and the force of tension.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Tension",
            "magnitude": 11.77,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": false
      },
      {
        "description": "Gravity",
        "content": "The force of gravity acts in the negative y direction: 3π/2 rad. It has magnitude equal to m*g. We can approximate g as 9.81.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "Tension",
        "content": "The force of tension acts in the positive y direction: π/2 rad. We know that the acceleration in a simple pulley system is (mass  2 - mass 1) * acceleration due to gravity / (mass 1 + mass 2) = (1.5-1) * 9.81 / (1.5+1) = 1.962 m/s^2. Because the acceleration is caused by the force of gravity and force of tension, we can solve for the force of tension acting on the weight as mass 1 * (a + acceleration due to gravity) = 1 * (1.962+9.81) = 11.77.",
        "forces": [
          {
            "description": "Tension",
            "magnitude": 11.77,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "All Forces",
        "content": "Combining all of the forces, we get the following free body diagram.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Tension",
            "magnitude": 11.77,
            "directionInDegrees": 90,
            "component": false
          }
        ],
        "showMagnitude": true
      }
    ]
  },
  "suspension": {
    "question": "A 1kg weight is attached to two rods hanging from 45° angles from the ceiling. The system is in equilibrium, i.e. the weight does not move. What are the magnitudes and directions of the forces acting on the weight?",
    "steps": [
      {
        "description": "Forces",
        "content": "There are three force acting on the red weight: the force of gravity, the force of tension from the left rod, and the force of tension from the right rod.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Left Tension",
            "magnitude": 6.94,
            "directionInDegrees": 135,
            "component": false
          },
          {
            "description": "Right Tension",
            "magnitude": 6.94,
            "directionInDegrees": 45,
            "component": false
          }
        ],
        "showMagnitude": false
      },
      {
      "description": "Force X Components",
        "content": "There are two forces with x components to consider: the tension from the left rod and the tension from the right rod. These must cancel each other out so that the net x force is 0.",
        "forces": [
          {
            "description": "Left Tension X Component",
            "magnitude": 4.907,
            "directionInDegrees": 180,
            "component": true
          },
          {
            "description": "Right Tension X Component",
            "magnitude": 4.907,
            "directionInDegrees": 0,
            "component": true
          }
        ],
        "showMagnitude": false
      }, {
      "description": "Force Y Components",
      "content": "There are three forces with y components to consider: the tension from the left rod, the tension from the right rod, and the force of gravity.",
      "forces": [
        {
          "description": "Left Tension Y Component",
          "magnitude": 4.907,
          "directionInDegrees": 90,
          "component": true
        },
        {
          "description": "Right Tension Y Component",
          "magnitude": 4.907,
          "directionInDegrees": 90,
          "component": true
        },
        {
          "description": "Gravity Y Component",
          "magnitude": 9.81,
          "directionInDegrees": 270,
          "component": true
        }
      ],
      "showMagnitude": false
      }, {
      "description": "Force Y Components",
        "content": "The y components of forces must cancel each other out so that the net y force is 0. Thus, gravity = left tension y component + right tension y component. Because the x components of tension are the same and the angles of each rod are the same, the y components must be the same. Thus, the y component for each force of tension must be 9.81/2.",
        "forces": [
          {
            "description": "Left Tension Y Component",
            "magnitude": 4.907,
            "directionInDegrees": 90,
            "component": true
          },
          {
            "description": "Right Tension Y Component",
            "magnitude": 4.907,
            "directionInDegrees": 90,
            "component": true
          },
          {
            "description": "Gravity Y Component",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": true
          }
        ],
        "showMagnitude": true
      }, {
      "description": "Tension",
        "content": "Now that we know the y component of tension for each rod is 4.907, we can solve for the full force of tension as 4.907 = T * sin(45°) -> T = 6.94.",
        "forces": [
          {
            "description": "Left Tension",
            "magnitude": 6.94,
            "directionInDegrees": 135,
            "component": false
          },
          {
            "description": "Right Tension",
            "magnitude": 6.94,
            "directionInDegrees": 45,
            "component": false
          }
        ],
        "showMagnitude": true
      },
      {
        "description": "All Forces",
        "content": "Combining all of the forces, we get the following free body diagram.",
        "forces": [
          {
            "description": "Gravity",
            "magnitude": 9.81,
            "directionInDegrees": 270,
            "component": false
          },
          {
            "description": "Left Tension",
            "magnitude": 6.94,
            "directionInDegrees": 135,
            "component": false
          },
          {
            "description": "Right Tension",
            "magnitude": 6.94,
            "directionInDegrees": 45,
            "component": false
          }
        ],
        "showMagnitude": true
      }
    ]
  }
}