aboutsummaryrefslogtreecommitdiff
path: root/main.py
blob: b4c1b228329a78df1a567d66231eb164eba74780 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import sys
import argparse

import tensorflow as tf
from skimage import transform

import PIL.Image

import hyperparameters as hp
from losses import YourModel
# from tensorboard_utils import \
#         ImageLabelingLogger, ConfusionMatrixLogger, CustomModelSaver

from skimage.io import imread, imsave
from matplotlib import pyplot as plt
import numpy as np


def parse_args():
    """ Perform command-line argument parsing. """

    parser = argparse.ArgumentParser(
        description="Let's train some neural nets!",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        '--content',
        required=True,
        help='''Content image filepath''')
    parser.add_argument(
        '--style',
        required=True,
        help='Style image filepath')
    parser.add_argument(
        '--savefile',
        required=True,
        help='Filename to save image')
    parser.add_argument(
        '--load',
        required=False,
        default='N',
        help='Y if you want to load the most recent weights'
    )


    return parser.parse_args()

def train(model: YourModel):
    for i in range(hp.num_epochs):
        if i % 50 == 0:
            copy = tf.identity(model.x)
            copy = tf.squeeze(copy)
            copy = tf.image.convert_image_dtype(copy, tf.uint8)
            imsave('save_images/epoch' + str(i) + '.jpg', copy)
            np.save('checkpoint.npy', model.x)
        model.train_step(i)

def main():
    """ Main function. """
    if os.path.exists(ARGS.content):
        ARGS.content = os.path.abspath(ARGS.content)
    if os.path.exists(ARGS.style):
        ARGS.style = os.path.abspath(ARGS.style)
    os.chdir(sys.path[0])
    print('this is', ARGS.content)
    


    content_image = imread(ARGS.content)
    style_image = imread(ARGS.style)
    style_image = transform.resize(style_image, content_image.shape, anti_aliasing=True)
    
    my_model = YourModel(content_image=content_image, style_image=style_image)

    if (ARGS.load == 'Y'):
        checkpoint = np.load('checkpoint.npy')
        image = tf.Variable(initial_value=checkpoint)

    train(my_model)

    # convert the tensor into an image
    my_model.x = tf.squeeze(my_model.x)
    final_image = tf.image.convert_image_dtype(my_model.x, tf.uint8)

    imsave(ARGS.savefile, final_image)

    plt.imshow(final_image)
    plt.show()


ARGS = parse_args()
main()