diff options
Diffstat (limited to 'hw3/3-12.jl')
-rw-r--r-- | hw3/3-12.jl | 113 |
1 files changed, 113 insertions, 0 deletions
diff --git a/hw3/3-12.jl b/hw3/3-12.jl new file mode 100644 index 0000000..c83e4c3 --- /dev/null +++ b/hw3/3-12.jl @@ -0,0 +1,113 @@ +# FOR PROBLEM 3.12 +# author: sotech117 + +#!/Applications/Julia-1.8.app/Contents/Resources/julia/bin/julia + +# Simulate driven pendulum to find chaotic regime + +using Plots # for plotting trajectory +using DifferentialEquations # for solving ODEs + +ω0 = 1.0 # ω0^2 = g/l +β = 0.5 # β = friction +f = 1.2 # forcing amplitude +ω = .66667 # forcing frequency +param = (ω0, β, f, ω) # parameters of anharmonic oscillator + +function tendency!(dθp::Vector{Float64}, θp::Vector{Float64}, param, t::Float64) + + (θ, p) = θp # 2d phase space + (dθ, dp) = dθp # 2d phase space derviatives + + (ω0, β, f, ω) = param + + a = -ω0^2 * sin(θ) - β * dθ + f * forcing(t, ω) # acceleration with m = 1 + + dθp[1] = p + dθp[2] = a +end + +function forcing(t::Float64, ω::Float64) + + return sin(ω * t) + +end + +function energy(θp::Vector{Float64}, param) + + (θ, p) = θp + + (ω0, β, f, ω) = param + + pe = ω0^2 * (1.0 - cos(θ)) + ke = 0.5 * p^2 + + return pe + ke + +end + +# take a list and reduce theta to the interval [-π, π] +function clean_θ(θ::Vector{Float64}) + rθ = [] + for i in 1:length(θ) + tmp = θ[i] % (2 * π) + if tmp > π + tmp = tmp - 2 * π + elseif tmp < -π + tmp = tmp + 2 * π + end + push!(rθ, tmp) + end + return rθ +end + +function get_poincare_sections(sample_θ, sample_p, sample_t, Ω_d, ϵ::Float64, phase_shift=0.0::Float64) + n = 0 + + poincare_θ = [] + poincare_p = [] + + for i in 1:length(sample_θ) + if abs(sample_t[i] * Ω_d - (2 * π * n + phase_shift)) < ϵ / 2 + push!(poincare_θ, sample_θ[i]) + push!(poincare_p, sample_p[i]) + n += 1 + end + end + + return (poincare_θ, poincare_p) +end + +θ0 = 0.2 # initial position in meters +p0 = 0.0 # initial velocity in m/s +θp0 = [θ0, p0] # initial condition in phase space +t_final = 1000.0 # final time of simulation + +tspan = (0.0, t_final) # span of time to simulate + +prob = ODEProblem(tendency!, θp0, tspan, param) # specify ODE +sol = solve(prob, Tsit5(), reltol=1e-12, abstol=1e-12) # solve using Tsit5 algorithm to specified accuracy + +sample_times = sol.t +println("\n\t Results") +println("final time = ", sample_times[end]) +println("Initial energy = ", energy(sol[:,1], param)) +println("Final energy = ", energy(sol[:, end], param)) + +(ω0, β, f, ω) = param + +# Plot of position vs. time +# θt = plot(sample_times, [sol[1, :], f * forcing.(sample_times, ω)], xlabel = "t", ylabel = "θ(t)", legend = false, title = "θ vs. t") + +# Phase space plot +cleaned = clean_θ(sol[1, :]) +θp = scatter(cleaned, sol[2, :], xlabel = "θ (radians)", ylabel = "ω (radians/s)", legend = false, title = "Phase Space Plot", mc=:black, ms=.35, ma=1) + + +# plot the poincare sections +(poincare_θ, pointcare_p) = get_poincare_sections(cleaned, sol[2, :], sol.t, ω, 0.1) +s1 = scatter(poincare_θ, pointcare_p, xlabel = "θ (radians)", ylabel = "ω (radians/s)", label="2nπ", title = "Poincare Sections", mc=:red, ms=2, ma=0.75) +s2 = scatter(get_poincare_sections(cleaned, sol[2, :], sol.t, ω, 0.1, π / 2.0), mc=:blue, ms=2, ma=0.75, label="2nπ + π/2", title="Poincare Sections", xlabel = "θ (radians)", ylabel = "ω (radians/s)", legend=:bottomleft) +s3 = scatter(get_poincare_sections(cleaned, sol[2, :], sol.t, ω, 0.1, π / 4.0), mc=:green, ms=2, ma=0.75, label="2nπ + π/4", title="Poincare Sections", xlabel = "θ (radians)", ylabel = "ω (radians/s)") + +plot(θp, s1, s2, s3)
\ No newline at end of file |