aboutsummaryrefslogtreecommitdiff
path: root/hw3/DrivenPendulum.jl
diff options
context:
space:
mode:
Diffstat (limited to 'hw3/DrivenPendulum.jl')
-rw-r--r--hw3/DrivenPendulum.jl110
1 files changed, 0 insertions, 110 deletions
diff --git a/hw3/DrivenPendulum.jl b/hw3/DrivenPendulum.jl
deleted file mode 100644
index 53a1af9..0000000
--- a/hw3/DrivenPendulum.jl
+++ /dev/null
@@ -1,110 +0,0 @@
-#!/Applications/Julia-1.8.app/Contents/Resources/julia/bin/julia
-
-# Simulate driven pendulum to find chaotic regime
-
-using Plots # for plotting trajectory
-using DifferentialEquations # for solving ODEs
-
-ω0 = 1.0 # ω0^2 = g/l
-β = 0.5 # β = friction
-f = 1.2 # forcing amplitude
-ω = .66667 # forcing frequency
-param = (ω0, β, f, ω) # parameters of anharmonic oscillator
-
-function tendency!(dθp::Vector{Float64}, θp::Vector{Float64}, param, t::Float64)
-
- (θ, p) = θp # 2d phase space
- (dθ, dp) = dθp # 2d phase space derviatives
-
- (ω0, β, f, ω) = param
-
- a = -ω0^2 * sin(θ) - β * dθ + f * forcing(t, ω) # acceleration with m = 1
-
- dθp[1] = p
- dθp[2] = a
-end
-
-function forcing(t::Float64, ω::Float64)
-
- return sin(ω * t)
-
-end
-
-function energy(θp::Vector{Float64}, param)
-
- (θ, p) = θp
-
- (ω0, β, f, ω) = param
-
- pe = ω0^2 * (1.0 - cos(θ))
- ke = 0.5 * p^2
-
- return pe + ke
-
-end
-
-# take a list and reduce theta to the interval [-π, π]
-function clean_θ(θ::Vector{Float64})
- rθ = []
- for i in 1:length(θ)
- tmp = θ[i] % (2 * π)
- if tmp > π
- tmp = tmp - 2 * π
- elseif tmp < -π
- tmp = tmp + 2 * π
- end
- push!(rθ, tmp)
- end
- return rθ
-end
-
-function get_poincare_sections(sample_θ, sample_p, sample_t, Ω_d, ϵ::Float64, phase_shift=0.0::Float64)
- n = 0
-
- poincare_θ = []
- poincare_p = []
-
- for i in 1:length(sample_θ)
- if abs(sample_t[i] * Ω_d - (2 * π * n + phase_shift)) < ϵ / 2
- push!(poincare_θ, sample_θ[i])
- push!(poincare_p, sample_p[i])
- n += 1
- end
- end
-
- return (poincare_θ, poincare_p)
-end
-
-θ0 = 0.2 # initial position in meters
-p0 = 0.0 # initial velocity in m/s
-θp0 = [θ0, p0] # initial condition in phase space
-t_final = 1000.0 # final time of simulation
-
-tspan = (0.0, t_final) # span of time to simulate
-
-prob = ODEProblem(tendency!, θp0, tspan, param) # specify ODE
-sol = solve(prob, Tsit5(), reltol=1e-12, abstol=1e-12) # solve using Tsit5 algorithm to specified accuracy
-
-sample_times = sol.t
-println("\n\t Results")
-println("final time = ", sample_times[end])
-println("Initial energy = ", energy(sol[:,1], param))
-println("Final energy = ", energy(sol[:, end], param))
-
-(ω0, β, f, ω) = param
-
-# Plot of position vs. time
-# θt = plot(sample_times, [sol[1, :], f * forcing.(sample_times, ω)], xlabel = "t", ylabel = "θ(t)", legend = false, title = "θ vs. t")
-
-# Phase space plot
-cleaned = clean_θ(sol[1, :])
-θp = scatter(cleaned, sol[2, :], xlabel = "θ (radians)", ylabel = "ω (radians/s)", legend = false, title = "Phase Space Plot", mc=:black, ms=.35, ma=1)
-
-
-# plot the poincare sections
-(poincare_θ, pointcare_p) = get_poincare_sections(cleaned, sol[2, :], sol.t, ω, 0.1)
-s1 = scatter(poincare_θ, pointcare_p, xlabel = "θ (radians)", ylabel = "ω (radians/s)", label="2nπ", title = "Poincare Sections", mc=:red, ms=2, ma=0.75)
-s2 = scatter(get_poincare_sections(cleaned, sol[2, :], sol.t, ω, 0.1, π / 2.0), mc=:blue, ms=2, ma=0.75, label="2nπ + π/2", title="Poincare Sections", xlabel = "θ (radians)", ylabel = "ω (radians/s)", legend=:bottomleft)
-s3 = scatter(get_poincare_sections(cleaned, sol[2, :], sol.t, ω, 0.1, π / 4.0), mc=:green, ms=2, ma=0.75, label="2nπ + π/4", title="Poincare Sections", xlabel = "θ (radians)", ylabel = "ω (radians/s)")
-
-plot(θp, s1, s2, s3) \ No newline at end of file