diff options
Diffstat (limited to 't/disp.jl')
-rw-r--r-- | t/disp.jl | 173 |
1 files changed, 0 insertions, 173 deletions
diff --git a/t/disp.jl b/t/disp.jl deleted file mode 100644 index 41ee2bb..0000000 --- a/t/disp.jl +++ /dev/null @@ -1,173 +0,0 @@ -function calculate_force( - left_pos, - middle_pos, - right_pos, - K, - alpha = 0, - beta = 0, -) - linear_force = K * (middle_pos - left_pos + middle_pos - right_pos) - quadratic_force = alpha * (middle_pos - left_pos)^2 + alpha * (middle_pos - right_pos)^2 - cubic_force = beta * (middle_pos - left_pos)^3 + beta * (middle_pos - right_pos)^3 - return linear_force + quadratic_force + cubic_force -end - -function tendency!(du, u, p, t) - # unpack the params - N, K, m = p - - # get the positions and momenta - qs = u[1:2:end] - ps = u[2:2:end] - - # go over the points in the lattice and update the state - for i in 2:N-1 - mass = m - if i == 2 * Int(N / 2) - 1 || i == 2 * Int(N / 2) - mass = 10000 - end - - du[i*2-1] = ps[i] / mass - force = - du[i*2] = force / mass - end - - force_end = K * (qs[2] - 2 * qs[1] + qs[N-1]) - du[1] = ps[1] / m - du[2] = force_end / m - du[end-1] = ps[end] / m - du[end] = force_end / m -end - -function get_initial_state( - N, - initial_displacement = 2, - initial_velocity = 0, -) - state = zeros(2 * N) - - middle_index = 2 * Int(N / 2) - 1 # middle mass - state[middle_index] = initial_displacement - state[middle_index+1] = initial_velocity - return state -end - -using DifferentialEquations -function run_simulation( - N, - K, - m, - final_time, - initial_displacement = 2, - initial_velocity = 0, -) - println("Running simulation with N = $N, K = $K, m = $m, final_time = $final_time, initial_displacement = $initial_displacement, initial_velocity = $initial_velocity\n") - s_0 = get_initial_state(N, initial_displacement, initial_velocity) - - # pack the params - p = N, K, m - t_span = (0.0, final_time) - prob = ODEProblem(tendency!, s_0, t_span, p) - sol = solve(prob, Tsit5(), reltol = 1e-10, abstol = 1e-10) # control simulation - - println("Done Running Sim!\n\n") - return sol -end - -using Plots -function animate_positions( - states, - time_steps, - time_min = 0, - time_max = 30, - red_threshold = 2, -) - println("Animating positions") - anim = @animate for i in 1:length(time_steps) - t = time_steps[i] - if t < time_min - continue - end - if t > time_max - break - end - positions = states[i][1:2:end] - v_middle = states[i][Int(length(states[1]) / 2)] - # plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3)) - if v_middle >= red_threshold - plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3), - color = :red, legend = :topright, - ) - else - plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3), - color = :blue, legend = :topright, - ) - end - end - mp4(anim, "t/animate-positions.mp4", fps = 30) - println("Done animating positions") -end - -function plot_starting_and_final_positions( - states, - time_steps, -) - p1 = plot(states[1][1:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", title = "First Three Modes") - plot!(p1, states[end][1:2:end], label = "Final", marker = :circle) - - # plot the vels - p2 = plot(states[1][2:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Velocity", title = "First Three Modes") - plot!(p2, states[end][2:2:end], label = "Final", marker = :circle) - - # save the plots - savefig(p1, "t/initial-final-positions.png") - savefig(p2, "t/initial-final-velocities.png") -end - -function analyize_vels( - states, - time_steps, - threshold = 1.975, -) - println("Analyzing velocities:\n") - output = [] - for i in 1:length(states) - if states[i][Int(length(states[i]) / 2)] >= threshold - push!(output, i) - println("Time: ", time_steps[i], " Position: ", states[i][Int(length(states[i]) / 2)]) - end - end - - # plot the first 10 seconds of Velocity - data = [] - for i in 1:length(states) - if time_steps[i] > 10 - break - end - push!(data, states[i][Int(length(states[i]) / 2)]) - end - p = plot(data, label = "Velocity Over Time", xlabel = "Time", ylabel = "Velocity") - savefig(p, "t/velocity-over-time.png") - - println("\nDone!\n\n") - return output -end - -# Run the simulation -N = 10 # number of masses -beta = 0 # cubic string spring -K = 100 # spring constant -A = 10 # amplitude -final_time = 10000 # seconds -m = 1 # mass of particles -plot_data = [] - -my_vel = 10 - -sol = run_simulation(N, K, m, final_time, 0, my_vel) - -println("final time: ", sol.t[end]) -# s = sol.u[1:2:end] -analyize_vels(sol.u, sol.t, my_vel) -plot_starting_and_final_positions(sol.u, sol.t) -animate_positions(sol.u, sol.t, 0, 1, my_vel) |