aboutsummaryrefslogtreecommitdiff
path: root/t/disp.jl
diff options
context:
space:
mode:
Diffstat (limited to 't/disp.jl')
-rw-r--r--t/disp.jl173
1 files changed, 0 insertions, 173 deletions
diff --git a/t/disp.jl b/t/disp.jl
deleted file mode 100644
index 41ee2bb..0000000
--- a/t/disp.jl
+++ /dev/null
@@ -1,173 +0,0 @@
-function calculate_force(
- left_pos,
- middle_pos,
- right_pos,
- K,
- alpha = 0,
- beta = 0,
-)
- linear_force = K * (middle_pos - left_pos + middle_pos - right_pos)
- quadratic_force = alpha * (middle_pos - left_pos)^2 + alpha * (middle_pos - right_pos)^2
- cubic_force = beta * (middle_pos - left_pos)^3 + beta * (middle_pos - right_pos)^3
- return linear_force + quadratic_force + cubic_force
-end
-
-function tendency!(du, u, p, t)
- # unpack the params
- N, K, m = p
-
- # get the positions and momenta
- qs = u[1:2:end]
- ps = u[2:2:end]
-
- # go over the points in the lattice and update the state
- for i in 2:N-1
- mass = m
- if i == 2 * Int(N / 2) - 1 || i == 2 * Int(N / 2)
- mass = 10000
- end
-
- du[i*2-1] = ps[i] / mass
- force =
- du[i*2] = force / mass
- end
-
- force_end = K * (qs[2] - 2 * qs[1] + qs[N-1])
- du[1] = ps[1] / m
- du[2] = force_end / m
- du[end-1] = ps[end] / m
- du[end] = force_end / m
-end
-
-function get_initial_state(
- N,
- initial_displacement = 2,
- initial_velocity = 0,
-)
- state = zeros(2 * N)
-
- middle_index = 2 * Int(N / 2) - 1 # middle mass
- state[middle_index] = initial_displacement
- state[middle_index+1] = initial_velocity
- return state
-end
-
-using DifferentialEquations
-function run_simulation(
- N,
- K,
- m,
- final_time,
- initial_displacement = 2,
- initial_velocity = 0,
-)
- println("Running simulation with N = $N, K = $K, m = $m, final_time = $final_time, initial_displacement = $initial_displacement, initial_velocity = $initial_velocity\n")
- s_0 = get_initial_state(N, initial_displacement, initial_velocity)
-
- # pack the params
- p = N, K, m
- t_span = (0.0, final_time)
- prob = ODEProblem(tendency!, s_0, t_span, p)
- sol = solve(prob, Tsit5(), reltol = 1e-10, abstol = 1e-10) # control simulation
-
- println("Done Running Sim!\n\n")
- return sol
-end
-
-using Plots
-function animate_positions(
- states,
- time_steps,
- time_min = 0,
- time_max = 30,
- red_threshold = 2,
-)
- println("Animating positions")
- anim = @animate for i in 1:length(time_steps)
- t = time_steps[i]
- if t < time_min
- continue
- end
- if t > time_max
- break
- end
- positions = states[i][1:2:end]
- v_middle = states[i][Int(length(states[1]) / 2)]
- # plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3))
- if v_middle >= red_threshold
- plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3),
- color = :red, legend = :topright,
- )
- else
- plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3),
- color = :blue, legend = :topright,
- )
- end
- end
- mp4(anim, "t/animate-positions.mp4", fps = 30)
- println("Done animating positions")
-end
-
-function plot_starting_and_final_positions(
- states,
- time_steps,
-)
- p1 = plot(states[1][1:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", title = "First Three Modes")
- plot!(p1, states[end][1:2:end], label = "Final", marker = :circle)
-
- # plot the vels
- p2 = plot(states[1][2:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Velocity", title = "First Three Modes")
- plot!(p2, states[end][2:2:end], label = "Final", marker = :circle)
-
- # save the plots
- savefig(p1, "t/initial-final-positions.png")
- savefig(p2, "t/initial-final-velocities.png")
-end
-
-function analyize_vels(
- states,
- time_steps,
- threshold = 1.975,
-)
- println("Analyzing velocities:\n")
- output = []
- for i in 1:length(states)
- if states[i][Int(length(states[i]) / 2)] >= threshold
- push!(output, i)
- println("Time: ", time_steps[i], " Position: ", states[i][Int(length(states[i]) / 2)])
- end
- end
-
- # plot the first 10 seconds of Velocity
- data = []
- for i in 1:length(states)
- if time_steps[i] > 10
- break
- end
- push!(data, states[i][Int(length(states[i]) / 2)])
- end
- p = plot(data, label = "Velocity Over Time", xlabel = "Time", ylabel = "Velocity")
- savefig(p, "t/velocity-over-time.png")
-
- println("\nDone!\n\n")
- return output
-end
-
-# Run the simulation
-N = 10 # number of masses
-beta = 0 # cubic string spring
-K = 100 # spring constant
-A = 10 # amplitude
-final_time = 10000 # seconds
-m = 1 # mass of particles
-plot_data = []
-
-my_vel = 10
-
-sol = run_simulation(N, K, m, final_time, 0, my_vel)
-
-println("final time: ", sol.t[end])
-# s = sol.u[1:2:end]
-analyize_vels(sol.u, sol.t, my_vel)
-plot_starting_and_final_positions(sol.u, sol.t)
-animate_positions(sol.u, sol.t, 0, 1, my_vel)