1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
|
function calculate_force(
left_pos,
middle_pos,
right_pos,
K,
alpha = 0.0,
beta = 0.0,
)
linear_force = K * (left_pos + right_pos - 2 * middle_pos)
quadratic_force = alpha * (left_pos - middle_pos)^2 + alpha * (right_pos - middle_pos)^2
cubic_force = beta * (left_pos - middle_pos)^3 + beta * (right_pos - middle_pos)^3
return linear_force + quadratic_force + cubic_force
end
function tendency!(du, u, params, t)
# unpack the params
N, modes, beta, A, dt, num_steps = params
# get the positions and momenta
qs = u[1:2:end]
ps = u[2:2:end]
num_masses = length(qs)
# go over the points in the lattice and update the state
for i in 2:num_masses-1
# left_index = max(1, i - 1)
# right_index = min(N, i + 1)
du[i*2-1] = ps[i]
force = calculate_force(qs[i-1], qs[i], qs[i+1], 1, 0, beta)
du[i*2] = force
end
# make last point same as first at rest
du[num_masses*2-1] = du[1] = 0 # set to 0
du[num_masses*2] = du[2] = 0
# if ps[Int(N / 2)] / M >= 1
# println("(in sim!) Time: ", t, " Vel: ", ps[Int(N / 2)] / M)
# # println("Other Positions: ", qs)
# println("Other Velocities: ", ps, "\n")
# end
end
function get_initial_state(
N,
modes,
beta,
A,
)
state = zeros(N + 2)
amp = A * sqrt(2 / (N + 1))
for i in 2:N+1
state[i] = amp * sin((modes * π * (i - 1)) / (N + 1))
end
return state
end
using DifferentialEquations
function run_simulation(
N,
modes,
beta,
A,
dt,
num_steps,
)
println("Running simulation with params: N=$N, modes=$modes, beta=$beta, A=$A, dt=$dt, num_steps=$num_steps")
# states = []
state = get_initial_state(N, 1, beta, A)
# prev_state = zeros(N)
# for i in 1:N
# prev_state[i] = state[i]
# end
params = (N, modes, beta, A, dt, num_steps)
# dynamics!(state, prev_state, params, states)
# state above is position, need to add in momentum
s_0 = zeros(2 * (N + 2))
for i in 1:length(state)
s_0[i*2-1] = state[i]
end
final_time = num_steps * dt
t_span = (0.0, final_time)
prob = ODEProblem(tendency!, s_0, t_span, params)
sol = solve(prob, Tsit5(), reltol = 1e-8, abstol = 1e-8, maxiters = 1e10) # control simulation
return sol
end
function get_pos_from_state(state)
return state[1:2:end]
end
# Run the simulation
# N = 32 # number of masses
# beta = 2.3 # cubic string spring
# A = 10 # amplitude
# modes = 3 # number of modes to plot
# final_time = 100000 # seconds
# dt = 0.05 # seconds
# num_steps = Int(final_time / dt)
# params = (N, modes, beta, A, dt, num_steps)
# println("Running simulation with params: ", params)
# sol = run_simulation(N, modes, beta, A, dt, num_steps)
# states = sol.u
# timesteps = sol.t
# println("Final state: ", states[end])
# plot the inital positions and the final positions
using Plots
# init_pos = get_initial_state(N, 1, beta, A)
# final_pos = get_pos_from_state(states[end])
# println("Initial: ", init_pos)
# println("Final: ", final_pos)
# plot(init_pos, label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", title = "First Three Modes")
# plot!(final_pos, label = "Final", marker = :circle)
# println("Saving initial-final-beta15.png")
# savefig("t/initial-final-beta-$beta.png")
function animate_states(states, timesteps, from = 1, to = 1000)
println("\nAnimating states")
# animate the s array of positions
# find the timestep that maps to the state index
i_start = 1
i_end = length(timesteps)
for i in 1:length(timesteps)
if timesteps[i] <= from
i_start = i
continue
end
if timesteps[i] >= to
i_end = i
break
end
end
anim = @animate for i in i_start:i_end
s = get_pos_from_state(states[i])
t = timesteps[i]
plot(s, label = "t = $t", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3))
end
mp4(anim, "t/animated-fpu.mp4", fps = 30)
println("Done animating, wrote to animated-fpu.mp4\n")
end
# animate_states(states, timesteps, 149500, 150000)
function caluclate_energies_for_mode(states, mode)
N = length(states[1]) / 2 - 2
total = []
kinetic = []
potential = []
for i in 1:length(states)
total_energy = 0
kinetic_energy = 0
potential_energy = 0
# find a_k for this mode
poses = get_pos_from_state(states[i])
a_k = 0
for j in 1:length(poses)
a_k += poses[j] * sin((mode * (j - 1) * π) / (N + 1))
end
amp = sqrt(2 / (N + 1))
a_k *= amp
# get the potenital energy
omega_k = 2 * sin((mode * π) / (2 * (N + 1)))
p = 0.5 * omega_k^2 * a_k^2
# find the kinetic energy
v_k = 0
vels = states[i][2:2:end]
for j in 1:length(vels)
v_k += vels[j] * sin((mode * (j - 1) * π) / (N + 1))
end
v_k *= amp
k = 0.5 * v_k^2
total_energy += k + p
kinetic_energy += k
potential_energy += p
push!(total, total_energy)
push!(kinetic, kinetic_energy)
push!(potential, potential_energy)
end
return total, kinetic, potential
end
function calculate_total_energy_by_state(states, timesteps)
total = []
kinetic = []
potential = []
for i in 1:length(states)
vels = states[i][2:2:end]
k = 0.5 * sum(vels .^ 2)
poses = get_pos_from_state(states[i])
p = 0
for j in 2:length(poses)
p += beta * (poses[j] - poses[j-1])^2
end
push!(total, k + p)
push!(kinetic, k)
push!(potential, p)
end
# plot all three over time on the same plot
plot(timesteps, total, label = "Total Energy", xlabel = "Time", ylabel = "Energy", title = "Total Energy Over Time")
plot!(timesteps, kinetic, label = "Kinetic Energy")
plot!(timesteps, potential, label = "Potential Energy")
return total, kinetic, potential
end
function print_energies_for_modes(states, max_mode = 3, index = 1)
# get the sum of total energy over all mode
total = 0
kinetic = 0
potential = 0
for i in 1:max_mode
t, k, p = caluclate_energies_for_mode(states, i)
total += t[index]
kinetic += k[index]
potential += p[index]
end
println("Total Energy: ", total)
println("Kinetic Energy: ", kinetic)
println("Potential Energy: ", potential)
end
function plot_phase_space(states, mass_number, intersecting_mass = 4)
# get the positions and momenta
qs = []
ps = []
for i in 2:length(states)
# only store if the other mass is crossing 0
if (states[i-1][intersecting_mass*2-1] < 0 && states[i][intersecting_mass*2-1] > 0) || (states[i-1][intersecting_mass*2-1] > 0 && states[i][intersecting_mass*2-1] < 0)
s = states[i]
q = s[mass_number*2-1]
p = s[mass_number*2]
push!(qs, q)
push!(ps, p)
end
end
s = scatter(
qs,
ps,
label = "Mass $mass_number",
xlabel = "Displacement",
ylabel = "Momentum",
title = "Phase Space for Masses when Mass $intersecting_mass crosses 0",
legend = :topleft,
marker = :circle,
markersize = 2,
xlim = (-1.5, 1.5),
ylim = (-1.5, 1.5),
)
# savefig(s, "t/phase-space-mass$mass_number-beta15.png")
return s
end
function analyze_energies_of_n_modes(modes::Array{Int}, states, timesteps, beta)
println("Analyzing energies of modes: ", modes)
total_by_mode = Dict()
kinetic_by_mode = Dict()
potential_by_mode = Dict()
for j in modes
t, k, p = caluclate_energies_for_mode(states, j)
total_by_mode[j] = t
kinetic_by_mode[j] = k
potential_by_mode[j] = p
end
total_energy = []
kinetic_energy = []
potential_energy = []
for i in 1:length(states)
total = 0
kinetic = 0
potential = 0
for j in modes
total += total_by_mode[j][i]
kinetic += kinetic_by_mode[j][i]
potential += potential_by_mode[j][i]
end
push!(total_energy, total)
push!(kinetic_energy, kinetic)
push!(potential_energy, potential)
end
# plot all three over time on the same plot
plot(timesteps, total_energy, label = "Total Energy", xlabel = "Time", ylabel = "Energy", title = "Total Energy Over Time")
plot!(timesteps, kinetic_energy, label = "Kinetic Energy")
plot!(timesteps, potential_energy, label = "Potential Energy")
savefig("t/procs/energies-modes-sum-beta-$beta.png")
println("Saved energies-modes-sum-beta-$beta.png. Summary Below:\n")
# plot the energies for each mode over time
plt = plot(title = "Energy Over Time for Modes $(join(modes, ", "))", xlabel = "Time", ylabel = "Energy")
for mode in modes
plot!(plt, timesteps, total_by_mode[mode], label = "Mode $mode")
# plot!(plt, timesteps, kinetic_by_mode[mode], label = "Mode $mode Kinetic")
# plot!(plt, timesteps, potential_by_mode[mode], label = "Mode $mode Potential")
end
savefig(plt, "t/procs/energies-modes-separate-beta-$beta.png")
# print the energies
println("Total Energy Initial: ", total_energy[1])
println("Total Energy Final: ", total_energy[end])
println("Kinetic Energy Initial: ", kinetic_energy[1])
println("Kinetic Energy Final: ", kinetic_energy[end])
println("Potential Energy Initial: ", potential_energy[1])
println("Potential Energy Final: ", potential_energy[end], "\n")
println("Done analyzing energies of modes: ", modes, "\n")
return total_energy, kinetic_energy, potential_energy, total_by_mode, kinetic_by_mode, potential_by_mode
end
function animate_masses_phase_space(states, mass_numbers, intersecting_mass = 4)
println("\nAnimating phase space for mass $mass_numbers when mass $intersecting_mass crosses 0")
# animate the s array of positions
# find the timestep that maps to the state index
anim = @animate for i in mass_numbers
s = plot_phase_space(states, i, intersecting_mass)
s
end
mp4(anim, "t/animated-phase-space-masses-beta-$beta.mp4", fps = 24)
end
function plot_mode_phase_space(states, mode_num, intersecting_mode, beta)
println("\nPlotting phase space for mode $mode_num")
# convert the state to a mode
a_modes = []
vel_modes = []
a_inter_modes = []
vel_inter_modes = []
N = length(states[1]) / 2 - 2
for i in 1:length(states)
a_mode = 0
vel_mode = 0
a_inter_mode = 0
vel_inter_mode = 0
positions = states[i][1:2:end]
velocities = states[i][2:2:end]
for j in 2:length(positions)-1
a_mode += positions[j] * sin((mode_num * (j - 1) * π) / (N + 1))
vel_mode += velocities[j] * sin((mode_num * (j - 1) * π) / (N + 1))
a_inter_mode += positions[j] * sin((intersecting_mode * (j - 1) * π) / (N + 1))
vel_inter_mode += velocities[j] * sin((intersecting_mode * (j - 1) * π) / (N + 1))
end
amp = sqrt(2 / (N + 1))
a_mode *= amp
vel_mode *= amp
a_inter_mode *= amp
vel_inter_mode *= amp
if i == 1
push!(a_inter_modes, a_inter_mode)
push!(vel_inter_modes, vel_inter_mode)
continue
end
if ((a_inter_modes[end] < 0 && a_inter_mode > 0) || (a_inter_modes[end] > 0 && a_inter_mode < 0))
push!(a_modes, a_mode)
push!(vel_modes, vel_mode)
end
push!(a_inter_modes, a_inter_mode)
push!(vel_inter_modes, vel_inter_mode)
end
# plot the phase space
scatter(a_modes, vel_modes, label = "Beta = $beta", xlabel = "Displacement", ylabel = "Momentum",
title = "Phase Space for Mode $mode_num when a_$intersecting_mode crosses 0",
xlim = (-10, 10),
ylim = (-1, 1),
color = :red,
legend = :topright,
)
# savefig("t/frames/phase-space-mode-$mode_num-beta-$beta.png")
println("Saved phase-space-mode-$mode_num-beta-$beta.png")
end
function animate_phase_space_plots_over_beta(betas, t_max, desired_mode, intersecting_mode)
N = 32 # number of masses
A = 10 # amplitude
modes = 3 # number of modes to plot
final_time = t_max # seconds
dt = 0.05 # seconds
num_steps = Int(final_time / dt)
results = []
for b in betas
s = run_simulation(N, modes, b, A, dt, num_steps)
states = s.u
timesteps = s.t
push!(results, states)
println("Simualted beta: ", b, " to t=", timesteps[end])
end
anim = @animate for i in 1:length(betas)
plot_mode_phase_space(results[i], desired_mode, intersecting_mode, betas[i])
end
mp4(anim, "t/animated-phase-space-modes-over-beta.mp4", fps = 15)
end
# animate_phase_space_plots_over_beta(collect(0:0.025:4), 25000, 1, 3)
# analyze_energies_of_n_modes([1, 3, 5, 7, 9, 11], timesteps)
# animate_masses_phase_space(states, collect(2:N+1), 17)
# plot_mode_phase_space(states, 1, 3)
function estimate_lynapov_exponent(t_max, beta, jitter = 0.001)
println("Estimating Lynapov Exponent for beta: ", beta)
N = 32 # number of masses
A = 10 # amplitude
modes = 3 # number of modes to plot
println("t_msx: ", t_max)
final_time = t_max # seconds
dt = 0.05 # seconds
num_steps = Int(final_time / dt)
t_span = (0.0, final_time)
params = (N, modes, beta, A, dt, num_steps)
# run a simulation with normal parameters
is = get_initial_state(N, 1, beta, A)
# plot iniital state
plot(is, label = "Initial State", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", title = "Initial Positions of Masses", markersize = 4)
is_0 = zeros(2 * (N + 2))
for i in 1:length(is)
is_0[i*2-1] = is[i]
end
prob_s = ODEProblem(tendency!, is_0, t_span, params)
# solve so that the timestep is exactly set to dt
s = solve(prob_s, SSPRK33(), dt = dt)
states_control = s.u
timesteps = s.t
# run a simulation with a small perturbation
# dynamics!(state, prev_state, params, states)
# state above is position, need to add in momentum
is2 = get_initial_state(N, 1, beta, A) .* (1 - jitter) # perturb the initial state
# is2 = get_initial_state(N, 1, beta, A) .- jitter # perturb the initial state
plot!(is2, label = "Perturbed Initial State", marker = :cross, xlabel = "Mass Number", ylabel = "Displacement", title = "Perturbed Initial Positions of Masses", msw = 2)
savefig("t/new/inits-jitter.png")
s_0 = zeros(2 * (N + 2))
for i in 1:length(is2)
s_0[i*2-1] = is2[i]
end
# add random jitter to the initial state
# middle_index = Int(N / 2) * 2
# s_0[middle_index] -= jitter # subtract a little from momenetum of middle particle
final_time = num_steps * dt
t_span = (0.0, final_time)
prob = ODEProblem(tendency!, s_0, t_span, params)
sol = solve(prob, SSPRK33(), dt = dt) # perturbed simulation
state_perturbed = sol.u
time_perturbed = sol.t
# println(time_perturbed .- timesteps, "\n")
println("Finished simulations")
println("Control len: ", length(states_control), " Perturbed len: ", length(state_perturbed), " Time len: ", length(time_perturbed))
# # print the difference in the two initial states
# println("Initial State Difference (pertrubed - control): ", state_perturbed[1] .- states_control[1])
# println("Final State Difference (pertrubed - control): ", state_perturbed[end] .- states_control[end])
# plot the difference in the two states over time
differences = []
for i in 1:length(state_perturbed)
# calculate mode 1 difference
a_k = 0
amp = sqrt(2 / (N + 1))
for j in 1:N
diff = abs(state_perturbed[i][j*2-1] - states_control[i][j*2-1])
a_k += diff * sin((1 * (j - 1) * π) / (N + 1))
end
a_k *= amp
push!(differences, a_k)
end
plot(time_perturbed, differences, label = "Difference in States", xlabel = "Time", ylabel = "Difference", title = "Absolute Difference in States Over Time", lw = 1.5, color = :blue)
savefig("t/frames/difference-in-states-beta-$beta.png")
# perform a linear regression on the log of the differences
# cut the data set into everythign after t=500
# find the index where t = 500
# index = 1
# for i in 1:length(time_perturbed)
# if time_perturbed[i] >= 500
# index = i
# break
# end
# end
# differences = differences[index:end]
# time_perturbed = time_perturbed[index:end]
ln_differeces = log.(differences)
(a, b) = linear_regression(time_perturbed, ln_differeces)
a = round(a, digits = 4)
b = round(b, digits = 4)
plot(time_perturbed, differences, label = "ln(difference in mode1)", xlabel = "Time", ylabel = "Difference", title = "Absolute Difference in States Over Time", msw = 0.0, yscale = :ln, color = :blue, lw = 1.5)
plot!(time_perturbed, exp.(a * time_perturbed .+ b), label = "exp($a*t + $b)", lw = 2, color = :red, linestyle = :dash)
savefig("t/frames/difference-in-states-beta-$beta-log.png")
println("Saved difference-in-states-beta-$beta.png and difference-in-states-beta-$beta-log.png\n")
println("Lynapov Exponent: ", a)
# check that solve doesn't explode
# animate_states(state_perturbed, time_perturbed, 0, 1)
return a
end
# linear regression of the log of the difference
function linear_regression(x, y)
n = length(x)
x̄ = sum(x) / n
ȳ = sum(y) / n
a = sum((x .- x̄) .* (y .- ȳ)) / sum((x .- x̄) .^ 2)
b = ȳ - a * x̄
return (a, b)
end
function analyze_equiparition(t_max, beta)
# run a simulation with normal parameters
N = 32 # number of masses
A = 10 # amplitude
modes = 3 # number of modes to plot
final_time = t_max # seconds
dt = 0.05 # seconds
num_steps = Int(final_time / dt)
t_span = (0.0, final_time)
params = (N, modes, beta, A, dt, num_steps)
s = run_simulation(N, modes, beta, A, dt, num_steps)
states = s.u
timesteps = s.t
analyze_energies_of_n_modes([1, 3, 5, 7], states, timesteps, beta)
end
# my_beta = 0.3
# estimate_lynapov_exponent(10000, my_beta, 0.001)
# analyze_equiparition(10000, my_beta)
# function plot_betas_versus_lynapov_exponent(betas, t_max, jitter = 0.001)
# lynapovs = []
# for b in betas
# lynapov = estimate_lynapov_exponent(t_max, b, jitter)
# push!(lynapovs, lynapov)
# end
# plot(betas, lynapovs, label = "Lynapov Exponent", xlabel = "Beta", ylabel = "Lynapov Exponent", title = "Lynapov Exponent Over Beta")
# savefig("t/lynapov-over-beta.png")
# end
function plot_probability_distrubtion_of_mode(energy_of_mode, total_energy, timesteps, beta)
# get the probability distribution of the mode
prob = []
for i in 1:length(timesteps)
push!(prob, energy_of_mode[i] / total_energy[1]) # energy is conserved
end
plot(timesteps, prob, label = "Probability of Mode 1", xlabel = "Time", ylabel = "Probability", title = "Probability of Mode 1 Over Time with beta=$beta", ylim = (0, 1))
savefig("t/probability-mode1-beta-$beta.png")
end
function analyze_probability_distribution_of_mode(t_max, beta)
# run a simulation with normal parameters
N = 32 # number of masses
A = 10 # amplitude
modes = 3 # number of modes to plot
final_time = t_max # seconds
dt = 0.05 # seconds
num_steps = Int(final_time / dt)
t_span = (0.0, final_time)
params = (N, modes, beta, A, dt, num_steps)
s = run_simulation(N, modes, beta, A, dt, num_steps)
states = s.u
timesteps = s.t
# get the energies of the mode
total_energy, kinetic_energy, potential_energy, total_by_mode, kinetic_by_mode, potential_by_mode = analyze_energies_of_n_modes([1, 3, 5, 7, 9, 11, 13], states, timesteps, beta)
# get the probability distribution of the mode
# plot_probability_distrubtion_of_mode(total_by_mode[1], total_energy, timesteps, beta)
# print the time when the probability gets lower than .5
for i in 1:length(timesteps)
if (total_by_mode[1][i] / total_energy[1]) < 0.6
println("TIME when probability of mode 1 is less than 0.6 for beta=$beta: ", timesteps[i])
return timesteps[i]
end
end
return -1
end
# estimate_lynapov_exponent(1000, 0.3, 0.001)
function plot_pos_at_time_t(t, beta)
# run a simulation with normal parameters
N = 32 # number of masses
A = 10 # amplitude
modes = 3 # number of modes to plot
final_time = t # seconds
dt = 0.05 # seconds
num_steps = Int(final_time / dt)
t_span = (0.0, final_time)
params = (N, modes, beta, A, dt, num_steps)
s = run_simulation(N, modes, beta, A, dt, num_steps)
states = s.u
timesteps = s.t
positions = s.u[end][1:2:end]
inital_positions = s.u[1][1:2:end]
plot(positions, label = "Positions at t=$t", xlabel = "Mass Number", ylabel = "Displacement", title = "Positions of Masses at t=$t, beta=$beta", lw = 2, marker = :circle)
plot!(inital_positions, label = "Initial Positions", lw = 2, marker = :circle)
savefig("t/new/positions-at-t-$t-beta-$beta.png")
end
function get_breakdown_time(beta, t_find = 3600)
t = analyze_probability_distribution_of_mode(t_find, beta)
if t == -1
println("Could not find time for beta: ", beta)
return -1
end
return t
end
# plot_pos_at_time_t(1000, 10)
# plot_pos_at_time_t(1000, 0)
# plot_betas_versus_lynapov_exponent(collect(0:1:50), 1000, 0.001)
# analyze_probability_distribution_of_mode(100000, 2.0)
# break_down_times = []
# bs = collect(1:0.5:50)
# for b_s in bs
# t_find = 3600
# t = analyze_probability_distribution_of_mode(t_find, b_s)
# if t == -1
# println("Could not find time for beta: ", b_s)
# continue
# end
# push!(break_down_times, t)
# end
# # plot beta vs breakdown time
# plot(bs, break_down_times, label = "Breakdown Time", xlabel = "Beta", ylabel = "Time", title = "Breakdown Time Over Beta")
# savefig("t/breakdown-time-over-beta.png")
# # plot the log of this
# one_over_breakdown_time = break_down_times .^ (-1)
# (a, b) = linear_regression(bs, one_over_breakdown_time)
# a = round(a, digits = 4)
# b = round(b, digits = 4)
# plot(bs, one_over_breakdown_time, label = "1 / (breakdown time)", xlabel = "Beta", ylabel = "1 / (breakdown time)", title = "Breakdown Time ^ -1 Over Beta", msw = 0.0, color = :blue, lw = 1.5)
# plot!(bs, a * bs .+ b, label = "1 / t = $a * beta + $b", lw = 2, color = :red, linestyle = :dash)
# savefig("t/ln-breakdown-time-over-beta.png")
# println("Done!")
# # for a range of betas, find the breakdown time and the lynapov exponent
function tmp(betas)
break_down_times = []
lynapovs = []
t_find = 350000
for b in betas
# if b < 0.5
# t_find = 10000
# end
t = get_breakdown_time(b, t_find)
if t == -1
continue
end
t_find = round(Int, t) + 100
l = estimate_lynapov_exponent(t_find, b, 0.001)
if l == 0
println("Lynapov for beta was zero: ", b)
continue
end
push!(break_down_times, t)
push!(lynapovs, l)
end
# plot lynapov vs breakdown time
scatter(break_down_times, lynapovs, label = "Lynapov Exponent", xlabel = "Breakdown Time", ylabel = "Lynapov Exponent", title = "Lynapov Exponent Over Breakdown Time")
savefig("t/new/new-lynapov-over-breakdown-time.png")
# plot this over log of lynapovs
ln_lynapovs = log.(lynapovs)
ln_break_down_times = log.(break_down_times)
(a, b) = linear_regression(ln_break_down_times, ln_lynapovs)
a = round(a, digits = 4)
b = round(b, digits = 4)
scatter(ln_break_down_times, ln_lynapovs, label = "ln(Lynapov Exponent)", xlabel = "ln(Breakdown Time)", ylabel = "ln(Lynapov Exponent)", title = "ln(Lynapov Exponent) Over ln(Breakdown Time)", msw = 0.0, color = :blue, lw = 1.5)
plot!(ln_break_down_times, a * ln_break_down_times .+ b, label = "ln(beta) = $a * ln(t) + $b", lw = 2, color = :red, linestyle = :dash)
savefig("t/new/new-ln-lynapov-over-breakdown-time.png")
# only one log
(a, b) = linear_regression(lynapovs, ln_break_down_times)
a = round(a, digits = 4)
b = round(b, digits = 4)
scatter(lynapovs, ln_break_down_times, label = "ln(Breakdown Time)", xlabel = "Lynapov Exponent", ylabel = "ln(Breakdown Time)", title = "ln(Breakdown Time) Over Lynapov Exponent", msw = 0.0, color = :blue, lw = 1.5)
plot!(lynapovs, a * lynapovs .+ b, label = "ln(t) = $a * beta + $b", lw = 2, color = :red, linestyle = :dash)
savefig("t/new/new-new-ln-breakdown-time-over-lynapov.png")
# plot the lynapoovs to the ^-1
one_over_breakdown_time = break_down_times .^ (-1)
(a, b) = linear_regression(lynapovs, one_over_breakdown_time)
a = round(a, digits = 4)
b = round(b, digits = 4)
scatter(lynapovs, one_over_breakdown_time, label = "1 / (breakdown time)", xlabel = "Lynapov Exponent", ylabel = "1 / (breakdown time)", title = "1 / (breakdown time) Over Lynapov Exponent", msw = 0.0, color = :blue, lw = 1.5)
plot!(lynapovs, a * lynapovs .+ b, label = "1 / t = $a * beta + $b", lw = 2, color = :red, linestyle = :dash)
savefig("t/new/new-one-over-lynapov-over-breakdown-time.png")
# plot the lynapov over betas
scatter(betas, lynapovs, label = "Lynapov Exponent", xlabel = "Beta", ylabel = "Lynapov Exponent", title = "Lynapov Exponent Over Beta")
savefig("t/new/new-lynapov-over-beta.png")
end
tmp(collect(0.3:0.025:10))
# estimate_lynapov_exponent(500000, 0.3, 0.001)
|