aboutsummaryrefslogtreecommitdiff
path: root/hw4/4-10.jl
blob: fa63926622af2a9997060342ba3f17b2337c9b8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/Applications/Julia-1.8.app/Contents/Resources/julia/bin/julia
# FOR PROBLEM 4.10

# Simulate planet around stationary star 

using Plots # for plotting trajectory
using Measures # for adding margins to the plots (no cut-off labels)
using DifferentialEquations # for solving ODEs
using LinearAlgebra
using Unitful
using UnitfulAstro # astrophysical units

G = 4.0*pi^2 # time scale = year and length scale = AU
δ = 0.0 # deviation from inverse-square law


# GM_S = ustrip(uconvert(u"AU^3/yr^2", 1 * UnitfulAstro.GMsun)) # gravitational constant times mass of the Sun
GM_S = 4.0*pi^2 # gravitational constant times mass of the Sun in AU^3/yr^2 (same as above)
a = 0.39 # semi-major axis of Mercury
e = 0.206 # eccentricity of Mercury

t_final = 2 # final time of simulation in years

α_values = [.0004, .0008, .0016, .0032] # values of α to predict Mercury percession with

function tendency!(drp, rp, param, t)
   
   # 6d phase space
   r = rp[1:3] 
   p = rp[4:6] 

   (G, δ, α) = param

   r2 = dot(r, r)

   correction = (1 + α / r2) # correction to force law
   a = - G * r * r2^(-1.5-δ) * correction  # acceleration with M_S = 1

   drp[1:3] = p[1:3]
   drp[4:6] = a[1:3]
end

function energy(rp, param)

   r = rp[1:3]
   p = rp[4:6]

   (G, δ, α) = param

   r2 = dot(r, r)

   # TODO: add correction to potential energy
   pe = -G * r2^(-0.5 - δ)/(1.0 + 2.0 * δ)
   ke = 0.5 * dot(p, p)

   return pe + ke

end

function angularMomentum(rp)

   r = rp[1:3]
   p = rp[4:6]
   
   return cross(r, p)

end

function calculate_vy1_0(a, e, GM_S)
   return sqrt(GM_S * (1.0 - e)/(a * (1.0 + e)))
end

function calculate_x_0(a, e)
   return a * (1.0 + e)
end

function find_distance_derivative_changes(sol)
   i_change = []

   xs = sol[1, :]
   ys = sol[2, :]
   r = sqrt.(xs.^2 + ys.^2)
   derivatives = []
   for i in 1:length(r)-1
      push!(derivatives, r[i+1] - r[i])
   end

   for i in 1:length(derivatives)-1
      if derivatives[i] > 0 && derivatives[i+1] < 0 # if the derviative goes from positive to negative, store it
         if abs(derivatives[i]) < abs(derivatives[i+1])
            push!(i_change, i)
         else
            push!(i_change, i+1)
         end
      end
   end

   return i_change
end

function linear_regression(x, y)
    n = length(x)
     = sum(x) / n
     = sum(y) / n
    a = sum((x .- ) .* (y .- )) / sum((x .- ).^2)
    b =  - a * 
    return (a, b)
end

function do_α_simulations(α_values, a, e, GM_S, t_final, δ)
   plots = []
   dθvdt = []

   x_0 = calculate_x_0(a, e)
   vy1_0 = calculate_vy1_0(a, e, GM_S)
   for α in α_values
      param = (GM_S, δ, α) # parameters of force law
      r0 = [x_0, 0.0, 0.0] # initial position in AU
      p0 = [0.0, vy1_0, 0.0] # initial velocity in AU / year
      rp0 = vcat(r0, p0) # initial condition in phase space 

      tspan = (0.0, t_final) # span of time to simulate


      prob = ODEProblem(tendency!, rp0, tspan, param) # specify ODE
      sol = solve(prob, Tsit5(), reltol=1e-12, abstol=1e-12) # solve using Tsit5 algorithm to specified accuracy

      # get the times where the distance derivatives change
      i_changes = find_distance_derivative_changes(sol)

      # find the angle of percession at these derviate changes
      rad_to_deg = 180/π
      all_θ = [atan(sol[2, i] / sol[1, i]) * rad_to_deg for i in 1:length(sol.t)]

      # Plot of orbit
      xy = plot(
         sol[1, :], sol[2, :], 
         xlabel = "x (AU)", 
         ylabel = "y (AU)", 
         title = "Percession when α=$(α)", 
         aspect_ratio=:equal, 
         label="Orbit", 
         legend=:bottomright, 
         lw=.5,
         left_margin=5mm
         )
      # Add the position of the Sun
      scatter!(xy, [0], [0], label = "Sun")
      # Add the positions where the distance changes
      scatter!(
         xy, 
         sol[1, :][i_changes], 
         sol[2, :][i_changes], 
         label = "Dist. Derivative Changes", 
         color=:green
      )
      # Add to plots array
      push!(plots, xy)

      # Plot the change in angles over time
       = scatter(
         sol.t[i_changes], 
         all_θ[i_changes], 
         xlabel = "time (yr)", 
         ylabel = "θ (degrees)", 
         title = "Orientation vs. Time (α=$(α))", 
         label="Dist. Derivative Changes", 
         color=:green,
         right_margin=5mm
      )
      # Add the linear regression of the change in angles
      (a, b) = linear_regression(sol.t[i_changes], all_θ[i_changes])
      a = round(a, digits=2)
      b = round(b, digits=2)
      plot!(, sol.t[i_changes], a * sol.t[i_changes] .+ b, label = "θ ≈ $a * t + $b", left_margin=7mm)
      # Push to the plots array
      push!(plots, )

      # Store the slope into the return array
      push!(dθvdt, a)
   end

   return plots, dθvdt
end

# Run the simulations
(plots, dθvdt) = do_α_simulations(α_values, a, e, GM_S, t_final, δ)

println("α_values = ", α_values)
println("dθvdt = ", dθvdt)

# Combine the plots into one plot
p_orbits = plot(plots..., layout=(4, 2), size=(800, 1000))
savefig(p_orbits, "hw4/4-10.png")

# Plot the change in dθ/dt over α
p_dθvdt = scatter(α_values, dθvdt, xlabel="α", ylabel="dθ/dt (degrees/year)", title="Percession Rate vs. α", lw=2, label="dθ/dt (from regression slopes)")
# Perform a linear regression on the data
(a, b) = linear_regression(α_values, dθvdt)
a = round(a, digits=2)
b = round(b, digits=2)
plot!(p_dθvdt, α_values, a * α_values .+ b, label = "dθ/dt ≈ $a * α + $b", left_margin=7mm)
savefig(p_dθvdt, "hw4/4-10-dθvdt.png")


percession_rate = a * 1.1e-8 # degrees per year to arcsec per year
# convert from degrees per year to arcsec per century
percession_rate = percession_rate * 3600 * 100 # arcsec per century
println("Percession rate = ", percession_rate, " arcsec/century")