aboutsummaryrefslogtreecommitdiff
path: root/hw4/4-19.jl
blob: 3208b07411b272610b7fcb481238448486a98a52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/Applications/Julia-1.8.app/Contents/Resources/julia/bin/julia
# FOR PROBLEM 4.19
# author: sotech117

# Simulate planet around stationary star 

using Plots # for plotting trajectory
using DifferentialEquations # for solving ODEs
using LinearAlgebra
#using Unitful
#using UnitfulAstro # astrophysical units

G = 4.0*pi^2 # time scale = year and length scale = AU
δ = 0.0 # deviation from inverse-square law

param = (G, δ) # parameters of force law

function tendency!(drp, rp, param, t)
   
   # 6d phase space
   r = rp[1:3] 
   p = rp[4:6] 
   θ = rp[7]


   ω = rp[8]

   (G, δ) = param

   r2 = dot(r, r)

   a = -G * r * r2^(-1.5-δ) # acceleration with m = 1

   x_c = r[1]
   y_c = r[2]

   τ = -3.0 * G * r2^(-2.5 - δ) * (x_c * sin(θ) - y_c * cos(θ)) * (x_c * cos(θ) + y_c * sin(θ))

   drp[1:3] = p[1:3]
   drp[4:6] = a[1:3]
   drp[7] = ω
   drp[8] = τ
end

function energy(rp, param)

   r = rp[1:3]
   p = rp[4:6]

   (G, δ) = param

   r2 = dot(r, r)

   pe = -G * r2^(-0.5 - δ)/(1.0 + 2.0 * δ)
   ke = 0.5 * dot(p, p)

   return pe + ke

end

function angularMomentum(rp)

   r = rp[1:3]
   p = rp[4:6]
   
   return cross(r, p)

end

# take a list and reduce theta to the interval [-π, π]
function clean_θ(θ::Vector{Float64})
     = []
    for i in 1:length(θ)
        tmp = θ[i] % (2 * π)
        if tmp > π
            tmp = tmp - 2 * π
        elseif tmp < -π
            tmp = tmp + 2 * π
        end
        push!(, tmp)
    end
    return 
end

function simulate(r0x, p0y, θ01)
    r0 = [r0x, 0.0, 0.0] # initial position in HU 
    p0 = [0.0, p0y, 0.0] # initial velocity in HU / year
    θ0 = [θ01]
    pθ0 = [0.0]
    rp0 = vcat(r0, p0, θ0, pθ0) # initial condition in phase space 
    t_final = 10.0 # final time of simulation

    tspan = (0.0, t_final) # span of time to simulate


    prob = ODEProblem(tendency!, rp0, tspan, param) # specify ODE
    sol = solve(prob, Tsit5(), reltol=1e-12, abstol=1e-12) # solve using Tsit5 algorithm to specified accuracy

    sample_times = sol.t
    println("\n\t Results")
    println("final time  = ", sample_times[end])
    println("Initial energy = ", energy(sol[:,1], param))
    println("Final energy = ", energy(sol[:, end], param))
    println("Initial angular momentum = ", angularMomentum(sol[:,1]))
    println("Final angular momentum  = ", angularMomentum(sol[:, end]))

    # Plot θ over time
    sol[7, :] = clean_θ(sol[7, :])

    return sol
end

function calculate_vy1_0(a, e, GM_S)
   return sqrt(GM_S * (1.0 - e)/(a * (1.0 + e)))
end

function calculate_Δθ(sol1, sol2, ticks=1000)
    # generate a equal set of times from the smaller of the two simulations
    time_0 = min(sol1.t[1], sol2.t[1])
    time_f = min(sol1.t[end], sol2.t[end])
    # make an even step fucntion over the length of these times
    sample_times = range(time_0, time_f, length=ticks)

    # interpolate the two simulations to the same time
    diff = []
    for i in 1:length(sample_times)-1
        t = sample_times[i]

        # find the index that is before the time
        idx1 = -1
        for j in 1:length(sol1.t)
            if sol1.t[j] > t
                idx1 = j - 1
                break
            end
        end
        idx2 = -1
        for j in 1:length(sol2.t)
            if sol2.t[j] > t
                idx2 = j - 1
                break
            end
        end

        # interpolate the values between the two timestamps
        θ1 = sol1[7, idx1] + (sol1[7, idx1+1] - sol1[7, idx1]) * (t - sol1.t[idx1])/(sol1.t[idx1+1] - sol1.t[idx1])
        θ2 = sol2[7, idx2] + (sol2[7, idx2+1] - sol2[7, idx2]) * (t - sol2.t[idx2])/(sol2.t[idx2+1] - sol2.t[idx2])

        push!(diff, sqrt((θ1 - θ2)^2))
    end

    return (sample_times[1:end-1], diff)
end


function linear_regression(x, y)
    n = length(x)
     = sum(x) / n
     = sum(y) / n
    a = sum((x .- ) .* (y .- )) / sum((x .- ).^2)
    b =  - a * 
    return (a, b)
end


function find_l_exponent(eccentricity, GM_S)
    a = 1.0
    vy1_0 = calculate_vy1_0(a, eccentricity, GM_S)
    sol1 = simulate(1.0, vy1_0, 0.0)
    sol2 = simulate(1.0, vy1_0, 0.01) # small change in θ_0
    (ts, diff_θ) = calculate_Δθ(sol1, sol2)

    plt = plot(ts, diff_θ, yscale=:ln, xlabel="time (s)", ylabel="Δθ (radians)", title="Δθ vs time", legend=:bottomright, lw=2, label="\$ Δ θ ≡ √{(θ_1 - θ_2)^2} \$")

    # linear regression of the log of the difference
    (a, b) = linear_regression(ts, log.(diff_θ))
    a_rounded = round(a, digits=4)
    b = round(b, digits=4)
    plt = plot!(ts, exp.(a*ts .+ b), label="exp($a_rounded*t + $b)", lw=1.2, color=:red, linestyle=:dash)

    return a, plt
end

function process_data!(les, es, plt)
    # find the first index where the l exponent is greater than .2
    idx = -1
    for i in 1:length(les)
        if les[i] > .2
            idx = i
            break
        end
    end

    println("e=$(es[idx]) & l=$(les[idx])")

    # add a vertical line at this value of e
    e_rounded = round(es[idx], digits=2)
    plot!(plt, [es[idx], es[idx]], [-0, .75], label="e : L > 0 ≈ $(e_rounded)", color=:red, lw=.75, linestyle=:dash)

    # perform a log regression only on values where the l exponent is greater than .2
    # (a, b) = linear_regression(es[idx:end], log.(les[idx:end]))
    # a_rounded = round(a, digits=2)
    # b = round(b, digits=2)
    # plot!(plt, es[idx:end], exp.(a*es[idx:end] .+ b), label="L ≈ exp($a_rounded*e + $b)", lw=2, color=:orange, linestyle=:dash)

    return
end

# simualte two elipical
# eccentricity = .224
# (a, plt) = find_l_exponent(eccentricity, G)

# generate a span of eccentricities

# eccentricities = range(0.0, .985, length=750) # todo: add more len for final render
# l_exponents = []
# for e in eccentricities
#     (a, _) = find_l_exponent(e, G)
#     push!(l_exponents, a)
# end

# # do a normal plot
# # p1 = plot(
# #     eccentricities, l_exponents, xlabel="eccentricity (e)", ylabel="Lyapunov Exponents (L)", title="Lyapunov Exponent vs Eccentricity", 
# #     lw=.8, label="Lyapunov Exponents (connected)")
# p1 = scatter(eccentricities, l_exponents, 
# title="Lyapunov Exponent vs Eccentricity", xlabel="Eccentricity (e)", ylabel="Lyapunov Exponent (L)", 
# color=:blue, markerstrokealpha=0.0, markersize=2, msw=0.0,
# label="Lyapunov Exponents")

# # process the data
# process_data!(l_exponents, eccentricities, p1)

# savefig(p1, "hw4/4-19-final.png")


eccentricity = .224
vy_elipitical = calculate_vy1_0(1.0, eccentricity, G)
println("vy1_0 = ", vy_elipitical)
sol1 = simulate(1.0, vy_elipitical, 0.0)
sol2 = simulate(1.0, vy_elipitical, 0.01) # small change in θ_0
(ts, diff_θ) = calculate_Δθ(sol1, sol2)
# plot the θ over time
plt_1 = plot(sol1.t, sol1[7, :], xlabel="time (Hyperion years)", ylabel="θ (radians)", title="θ vs time \$(θ_0 = 0, e = .224\$)", legend=false, lw=2, label="θ_0 = 0.0")
# plot the ω over time
plt_2 = plot(sol2.t, sol2[7, :], xlabel="time (Hyperion years)", ylabel="θ (radians)", title="θ vs time \$(θ_0 = .01, e = .224)\$", legend=false, lw=2, label="ω_0 = 0.0")
# plot the difference in θ over time
plot_3 = plot(ts, diff_θ, yscale=:ln, xlabel="time (Hyperion years) ", ylabel="Δθ (radians)", title="Δθ vs time", legend=:bottomright, lw=2, label="\$ Δ θ ≡ √{(θ_1 - θ_2)^2} \$")

# apply a linear regression to the log of the difference
(a, b) = linear_regression(ts, log.(diff_θ))
a_rounded = round(a, digits=2)
b = round(b, digits=2)
plot_3 = plot!(ts, exp.(a*ts .+ b), label="exp($a_rounded*t + $b)", lw=1.2, color=:red, linestyle=:dash)

plt_combined = plot(plt_1, plt_2, plot_3, layout=(3, 1), size=(800, 1000))
savefig(plt_combined, "hw4/4-19-.224.png")

# run another simuation, but only a circle
e = 0
vy_circular = calculate_vy1_0(1.0, e, G)
println("vy1_0 = ", vy_circular)
sol1 = simulate(1.0, vy_circular, 0.0)
sol2 = simulate(1.0, vy_circular, 0.01) # small change in θ_0
(ts, diff_θ) = calculate_Δθ(sol1, sol2)
# plot the θ over time
plt_1 = plot(sol1.t, sol1[7, :], xlabel="time (Hyperion years)", ylabel="θ (radians)", title="θ vs time (\$θ_0 = 0, e = 0\$)", lw=2, legend=false)
# plot the ω over time
plt_2 = plot(sol2.t, sol2[7, :], xlabel="time (Hyperion years)", ylabel="θ (radians)", title="θ vs time (\$θ_0 = .01, e = 0)\$", lw=2, legend = false)
# plot the difference in θ over time
plt = plot(ts, diff_θ, yscale=:ln, xlabel="time (Hyperion years)", ylabel="Δθ (radians)", title="Δθ vs time", legend=:bottomright, lw=2, label="\$ Δ θ ≡ √{(θ_1 - θ_2)^2} \$")

# apply a linear regression to the log of the difference
(a, b) = linear_regression(ts, log.(diff_θ))
a_rounded = round(a, digits=2)
b = round(b, digits=2)
plt = plot!(ts, exp.(a*ts .+ b), label="exp($a_rounded*t + $b)", lw=1.2, color=:red, linestyle=:dash)

plt_combined = plot(plt_1, plt_2, plt, layout=(3, 1), size=(800, 1000))

savefig(plt_combined, "hw4/4-19-0.png")