1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
|
# molecular dynamics 2d.
# usage:
# at the end of this script, under the header "DEMOS",
# you'll see some functions which implement demos from GN chapter 9.
# simply load the script in your development environment
# (I strongly recommend not using jupiter)
# and in the console/REPL run
# demo_0()
# etc.
# demos 0,1,3 can optionally make an animated gif
# if you call it with the optional argument demo_3(gif=1)
# lmk if this script is giving you grief or if you find any bugs
# kian@brown.edu
using Statistics
using StatsPlots
using Plots.PlotMeasures # for margins
mutable struct ParticleSystem
N::Int64 # number of particles
L::Float64 # square box side length
T₀::Float64 # initial temperature
t::Float64 # system time
dt::Float64 # time step
state::Vector{Float64} # state space array
steps::Int64 # number of steps
sampleInterval::Int64 # interval for sampling data
timeData::Vector{Float64} # array of sampled time points
energyData::Vector{Float64} # array of sampled energy values
tempData::Vector{Float64} # array of sampled temperature values
tempAccumulator::Float64 # temperature accumulator
squareTempAccumulator::Float64 # T^2 accumulator
virialAccumulator::Float64 # virial accumulator
xData::Vector{Vector{Float64}} # array of sampled position data
vData::Vector{Vector{Float64}} # array of sampled velocity data
forceType::String # force
end
function ParticleSystem(N::Int64=64, L::Float64=10.0, T₀::Float64=1.0)
t = 0.0
dt = 0.001
state = zeros(4N) # state space array, [x1,y1,x2,y2,...,vx1,vy1,...]
steps = 0
timeData = Float64[]
energyData = Float64[]
sampleInterval = 100
tempData = Float64[]
tempAccumulator = 0.0
squareTempAccumulator = 0.0
virialAccumulator = 0.0
xData = Vector{Float64}[]
vData = Vector{Float64}[]
forceType = "lennardJones"
return ParticleSystem(
N,
L,
T₀,
t,
dt,
state,
steps,
sampleInterval,
timeData,
energyData,
tempData,
tempAccumulator,
squareTempAccumulator,
virialAccumulator,
xData,
vData,
forceType
)
end
# some useful "views" of the state array
# (read the performance tips chapter of the julia manual)
@views positions(state) = state[ 1:Int64(length(state)/2) ]
@views velocities(state) = state[ (Int64(length(state)/2)+1):end ]
@views xcomponent(vector) = vector[ 1:2:end ]
@views ycomponent(vector) = vector[ 2:2:end ]
@views particle(n, vector) = [ vector[2n-1], vector[2n] ]
# INITIALIZATION
################################################################################
function set_random_positions!(sys::ParticleSystem)
println("\tposition configuration: random")
positions(sys.state) .= rand(2*sys.N) .* sys.L
cool!(sys)
end
function set_square_lattice_positions!(sys::ParticleSystem)
println("\tposition configuration: square lattice")
n = Int64(floor(sqrt(sys.N))) # num lattice points per axis
latticeSpacing = sys.L / n
if sys.N != n^2
println("\t\toops... your chosen N=$(sys.N) is not a square number")
println("\t\t-> resetting N to $(n^2).")
sys.N = n^2
sys.state = zeros(4 * sys.N)
end
for i in 0:(n-1)
for j in 0:(n-1)
sys.state[2*(i*n+j)+1] = (i + 0.5) * latticeSpacing
sys.state[2*(i*n+j)+2] = (j + 0.5) * latticeSpacing
end
end
end
function set_triangular_lattice_positions!(sys::ParticleSystem)
println("\tposition configuration: triangular lattice")
n = Int64(floor(sqrt(sys.N))) # num lattice points per axis
latticeSpacing = sys.L / n
if sys.N != n^2
println("\t\toops... your chosen N=$(sys.N) is not a square number")
println("\t\t-> resetting N to $(n^2).")
sys.N = n^2
sys.state = zeros(4 * sys.N)
end
for i in 0:(n-1)
for j in 0:(n-1)
sys.state[2*(i*n+j)+1] = (i + 0.5) * latticeSpacing
sys.state[2*(i*n+j)+2] = (j + 0.5) * latticeSpacing
end
end
for i in 0:(n-1)
for j in 0:(n-1)
sys.state[2*(i*n+j)+1] += (j % 2) * latticeSpacing / 2
end
end
end
function add_position_jitter!(sys::ParticleSystem, jitter::Float64=0.5)
println("\tadding a wee bit of random jitter to particle positions...")
for i = 1:length(positions(sys.state))
sys.state[i] += rand() - jitter
end
end
function set_random_velocities!(sys::ParticleSystem)
println("\tvelocity configuration: random")
velocities(sys.state) .= rand(2*sys.N) .- 0.5
zero_total_momentum!(sys)
velocities(sys.state) .*= sqrt(sys.T₀/temperature(sys))
end
function zero_total_momentum!(sys::ParticleSystem)
xcomponent(velocities(sys.state)) .-=
mean(xcomponent(velocities(sys.state)))
ycomponent(velocities(sys.state)) .-=
mean(ycomponent(velocities(sys.state)))
end
# FORCES / POTENTIALS
################################################################################
function force(sys::ParticleSystem)
if sys.forceType == "lennardJones"
force, virial = lennard_jones_force(sys)
elseif sys.forceType == "powerLaw"
force, virial = power_law_force(sys)
end
sys.virialAccumulator += virial
return force
end
# the minimum image approximation
# (periodic boundary conditions)
function minimum_image(xij::Float64, L::Float64)
if xij > (L/2)
xij -= L
elseif xij < -(L/2)
xij += L
end
return xij
end
function lennard_jones_force(sys::ParticleSystem)
x = xcomponent(positions(sys.state))
y = ycomponent(positions(sys.state))
virial = 0.0
force = zeros(2*sys.N)
Threads.@threads for i = 1:(sys.N-1)
for j = (i+1):sys.N
dx = minimum_image(x[i] - x[j], sys.L)
dy = minimum_image(y[i] - y[j], sys.L)
r2inv = 1.0 / (dx^2 + dy^2)
f = 48.0 * r2inv^7 - 24.0 * r2inv^4
fx = dx * f
fy = dy * f
force[2*i-1] += fx
force[2*i] += fy
force[2*j-1] -= fx
force[2*j] -= fy
virial += fx * dx + fy * dy
end
end
return force, 0.5 * virial
end
function lennard_jones_potential(sys::ParticleSystem)
x = xcomponent(positions(sys.state))
y = ycomponent(positions(sys.state))
U = 0.0
Threads.@threads for i in 1:(sys.N-1)
for j in (i+1):sys.N
dx = minimum_image(x[i] - x[j], sys.L)
dy = minimum_image(y[i] - y[j], sys.L)
r2inv = 1.0 / (dx^2 + dy^2)
U += r2inv^6 - r2inv^3
end
end
return 4.0 * U
end
function power_law_force(sys::ParticleSystem)
end
function power_law_potential(sys::ParticleSystem)
end
# TIME EVOLUTION
################################################################################
function keep_particles_in_box!(sys::ParticleSystem)
for i in 1:(2*sys.N)
if positions(sys.state)[i] > sys.L
positions(sys.state)[i] -= sys.L
elseif positions(sys.state)[i] < 0.0
positions(sys.state)[i] += sys.L
end
end
# # another way of doing this: use the ternary operator
# for i in 1:(2 * sys.N)
# positions(sys.state)[i] < 0.0 ?
# positions(sys.state)[i] % sys.L + sys.L :
# positions(sys.state)[i] % sys.L
# end
end
function verlet_step!(sys::ParticleSystem)
# compute acceleration at current time
acceleration = force(sys)
# compute positions at t + dt
positions(sys.state) .+=
velocities(sys.state) .* sys.dt .+
0.5 .* acceleration .* (sys.dt)^2
# enforce boundary conditions
# (basically check if any particles left the box and put them back)
# see function implementation for deets
keep_particles_in_box!(sys)
# compute velocities at t + dt
velocities(sys.state) .+=
0.5 * sys.dt .* (acceleration + force(sys))
end
function evolve!(sys::ParticleSystem, runtime::Float64=10.0)
numsteps = Int64(abs(runtime/sys.dt) + 1)
print_evolution_message(runtime, numsteps)
@time for step in 1:numsteps
verlet_step!(sys)
zero_total_momentum!(sys)
if (step % sys.sampleInterval == 1)
push!(sys.timeData, sys.t)
push!(sys.energyData, energy(sys))
push!(sys.xData, positions(sys.state))
push!(sys.vData, velocities(sys.state))
T = temperature(sys)
push!(sys.tempData, T)
sys.tempAccumulator += T
sys.squareTempAccumulator += T^2
end
sys.t += sys.dt
sys.steps += 1
end
println("done.")
end
function reverse_time!(sys)
sys.dt *= -1
println("\ntime reversed! dt = $(sys.dt)")
end
function cool!(sys::ParticleSystem, cooltime::Float64=1.0)
numsteps = Int64(cooltime/sys.dt)
for step in 1:numsteps
verlet_step!(sys)
velocities(sys.state) .*= (1.0 - sys.dt)
end
reset_statistics!(sys)
end
# MEASUREMENTS
################################################################################
function kinetic_energy(sys::ParticleSystem)
return 0.5 * sum(velocities(sys.state) .* velocities(sys.state))
end
function potential_energy(sys::ParticleSystem)
return lennard_jones_potential(sys)
end
function temperature(sys::ParticleSystem)
return kinetic_energy(sys) / sys.N
end
function energy(sys::ParticleSystem)
return potential_energy(sys) + kinetic_energy(sys)
end
# STATISTICS
################################################################################
function reset_statistics!(sys::ParticleSystem)
sys.steps = 0
sys.tempAccumulator = 0.0
sys.squareTempAccumulator = 0.0
sys.virialAccumulator = 0.0
sys.xData = []
sys.vData = []
end
function mean_temperature(sys::ParticleSystem)
return sys.tempAccumulator / sys.steps
end
function mean_square_temperature(sys::ParticleSystem)
return sys.squareTempAccumulator / sys.steps
end
function mean_pressure(sys::ParticleSystem)
# factor of half because force is calculated twice each step
meanVirial = 0.5 * sys.virialAccumulator / sys.steps
return 1.0 + 0.5 * meanVirial / (sys.N * mean_temperature(sys))
end
function heat_capacity(sys::ParticleSystem)
meanTemperature = mean_temperature(sys)
meanSquareTemperature = mean_square_temperature(sys)
σ2 = meanSquareTemperature - meanTemperature^2
denom = 1.0 - σ2 * sys.N / meanTemperature^2
return sys.N / denom
end
function mean_energy(sys::ParticleSystem)
return mean(sys.energyData)
end
function std_energy(sys::ParticleSystem)
return std(sys.energyData)
end
# MATH / ADDITIONAL FUNCTIONS
################################################################################
function dot(v1::Vector{Float64}, v2::Vector{Float64})
return sum(v1 .* v2)
end
# GRAPHS
################################################################################
function initialize_plot()
plot(
size=(800,800),
titlefontsize=12,
guidefontsize=12,
)
end
function plot_positions_t(sys::ParticleSystem, t::Int64)
initialize_plot()
for n = 1:sys.N
scatter!(
[ sys.xData[t][2n-1] ],
[ sys.xData[t][2n] ],
markersize = 4.0,
markercolor = n,
markerstrokewidth = 0.4,
grid = true,
framestyle = :box,
legend = false,
)
end
end
function animate(sys::ParticleSystem, interval::Int64=1)
println("\ngenerating gif...")
scatter!()
animation = @animate for t in 1:length(sys.xData)
scatter()
for n = 1:sys.N
scatter!(
[ sys.xData[t][2n-1] ],
[ sys.xData[t][2n] ],
#markersize = 4.0,
markercolor = n,
#markerstrokewidth = 0.4,
grid = true,
framestyle = :box,
legend = false,
)
end
xlims!(0, sys.L)
ylims!(0, sys.L)
xlabel!("x")
ylabel!("y")
end every interval
gif(animation, "./animation.gif")
println("done.")
end
function plot_positions(sys::ParticleSystem)
initialize_plot()
for n = 1:sys.N
scatter!(
[ xcomponent(positions(sys.state))[n] ],
[ ycomponent(positions(sys.state))[n] ],
markersize = 4.0,
markercolor = n,
markerstrokewidth = 0.4,
grid = true,
framestyle = :box,
legend = false,
)
end
xlims!(0, sys.L)
ylims!(0, sys.L)
xlabel!("x")
ylabel!("y")
title!("positions at t=$(round(sys.t, digits=4))")
end
function plot_trajectories(sys::ParticleSystem, particles::Vector{Int64}=[ 1 ], t="trajectories")
initialize_plot()
# for n = 1:sys.N
# scatter!(
# [ xcomponent(positions(sys.state))[n] ],
# [ ycomponent(positions(sys.state))[n] ],
# markersize = 4.0,
# markercolor = n,
# markerstrokewidth = 0.4,
# grid = true,
# framestyle = :box,
# legend = false,
# )
# end
for n in collect(particles)
xdata = [ sys.xData[i][2n-1] for i in 1:length(sys.xData) ]
ydata = [ sys.xData[i][2n] for i in 1:length(sys.xData) ]
# plot trajectory line for nth particle
# scatter!(
# xdata,
# ydata,
# color = n,
# #markerstrokewidth = 0,
# markerstrokecolor = n,
# markersize = 0.7,
# markeralpha = 0.5,
# label = false,
# widen = false,
# )
# plot initial position for nth particle
scatter!(
[ sys.xData[1][2n-1] ],
[ sys.xData[1][2n] ],
markersize = 4.0,
markercolor = n,
markerstrokewidth = 0.4,
#label = "pcl. $n @t=t₀",
widen = false,
legend = false,
top_margin=10mm,
bottom_margin=10mm,
left_margin=10mm,
right_margin=10mm
)
# plot final position for nth particle
# scatter!(
# [ sys.xData[end][2n-1] ],
# [ sys.xData[end][2n] ],
# markersize = 4.0,
# markercolor = n,
# markerstrokewidth = 0.4,
# markeralpha = 1.0,
# #label = "pcl $n @t=t",
# widen = false,
# )
end
title!(t)
plot!()
end
function plot_temperature(sys::ParticleSystem)
initialize_plot()
plot!(
sys.timeData,
sys.tempData,
#widen = true,
)
ylims!(
mean(sys.tempData) - std(sys.tempData) * 20,
mean(sys.tempData) + std(sys.tempData) * 20,
)
xlabel!("t")
ylabel!("T(t)")
title!("temperature vs time")
end
function plot_energy(sys::ParticleSystem, ylimit::Float64=1.0)
initialize_plot()
plot!(
sys.timeData,
sys.energyData,
#widen = true,
)
ylims!(
#ylimit * (mean(sys.energyData) - 1),
#ylimit * (mean(sys.energyData) + 1)
mean(sys.energyData) - std(sys.energyData) * 10,
mean(sys.energyData) + std(sys.energyData) * 10,
)
xlabel!("t")
ylabel!("E(t)")
title!("energy vs time")
end
function plot_speed_distribution(sys::ParticleSystem, numSamples::Int64=5, title="speed distribution")
initialize_plot()
numDataPoints = Int64(length(sys.vData))
interval = Int64(floor(numDataPoints / numSamples))
samples = collect(1:interval:numDataPoints)
for s in samples
speed = sqrt.(
xcomponent(sys.vData[s]).^2 .+
ycomponent(sys.vData[s]).^2
)
# assert that speed is not negative
speed_min = minimum(speed)
speed_max = maximum(speed)
density!(
speed,
normalize = :pdf,
xlims = (speed_min, speed_max),
label = "t = $(round(sys.timeData[s], digits=2))",
top_margin=10mm,
bottom_margin=10mm,
left_margin=10mm,
right_margin=10mm,
)
end
xlabel!("speed")
ylabel!("pdf(speed)")
title!(title)
end
# CONSOLE PRINT DATA
################################################################################
function print_hello()
println("\nmolecular dynamics!")
println("number of threads: ", Threads.nthreads())
end
function print_bonjour()
println("\nbonjour")
end
function print_system_parameters(sys::ParticleSystem)
println("\nsystem parameters:")
println("\tN = $(sys.N) (number of particles)")
println("\tL = $(sys.L) (side length of square box)")
println("\tDT = $(sys.dt) (time step)")
end
function print_system_data(sys::ParticleSystem)
println("\nsystem data at time t=$(round(sys.t, digits=4))")
if sys.steps == 0
println("\ttemperature: $(temperature(sys))")
println("\tenergy: $(energy(sys))")
else
println("\tsteps evolved: $(sys.steps)")
println("\ttemperature: $(temperature(sys))")
println("\tenergy: $(energy(sys))")
println("\tmean energy: $(mean_energy(sys))")
println("\tstd energy: $(std_energy(sys))")
println("\theat capacity: $(heat_capacity(sys))")
println("\tPV/NkT: $(mean_pressure(sys))")
end
end
function print_evolution_message(runtime, numsteps)
println("\nevolving...")
end
# DEMOS
################################################################################
# DEMO 0: APPROACH TO EQUILIBRIUM
function demo_0(;gif=0)
println("\nDEMO 0: APPROACH TO EQUILIBRIUM")
println("----------------------------------------")
sys = ParticleSystem(64, 120.0, 1.0)
print_system_parameters(sys)
set_square_lattice_positions!(sys)
set_random_velocities!(sys)
print_system_data(sys)
p1 = plot_positions(sys)
evolve!(sys, 40.0)
print_system_data(sys)
p2 = plot_trajectories(sys, collect(1:64))
p3 = plot_energy(sys)
p4 = plot_temperature(sys)
# make gif
if gif == 1
animate(sys, 1)
end
plot(
p1, p2, p3, p4,
layout = grid(2,2, heights=[0.7,0.3]),
size = (1280,720)
)
end
# DEMO 1: TIME REVERSAL TEST
function demo_1(;gif=0)
println("\nDEMO 1: TIME REVERSAL TEST")
println("----------------------------------------")
sys = ParticleSystem(64, 120.0, 1.0)
print_system_parameters(sys)
set_square_lattice_positions!(sys)
set_random_velocities!(sys)
print_system_data(sys)
p1 = plot_positions(sys)
evolve!(sys, 50.0)
#p2 = plot_trajectories(sys, collect(1:64))
p2 = plot_positions(sys)
reverse_time!(sys)
evolve!(sys, 50.0)
print_system_data(sys)
#p3 = plot_trajectories(sys, collect(1:64))
p3 = plot_positions(sys)
# make gif
if gif == 1
animate(sys, 4)
end
plot(
p1, p2, p3,
layout = (1,3),
size = (1200,400)
)
end
# DEMO 2: SPEED DISTRIBUTION
function demo_2()
println("\nDEMO 2: SPEED DISTRIBUTION")
println("----------------------------------------")
sys = ParticleSystem[]
# array for speed distribution plots
ps = Plots.Plot{Plots.GRBackend}[]
# array for trajectory plots
pt = Plots.Plot{Plots.GRBackend}[]
# initialize three systems with different initial conditions
# but same KE and PE, evolve, and save plots
for i = 1:3
push!(sys, ParticleSystem(64, 120.0, 1.0))
println("\nSYSTEM $i")
print_system_parameters(sys[i])
set_square_lattice_positions!(sys[i])
add_position_jitter!(sys[i])
set_random_velocities!(sys[i])
print_system_data(sys[i])
evolve!(sys[i], 500.0)
print_system_data(sys[i])
push!(ps, plot_speed_distribution(sys[i], 5))
push!(pt, plot_trajectories(sys[i], collect(1:64)) )
end
# plot speed distribution and trajectory plots
plot(
ps[1], ps[2], ps[3],
pt[1], pt[2], pt[3],
layout = (2,3),
size = (1920,1080)
)
end
# DEMO 3: MELTING TRANSITION
function demo_3(;gif=0)
println("\nDEMO 3: MELTING TRANSITION")
println("----------------------------------------")
# initialize system of particles on square lattice with zero velocity
sys = ParticleSystem(100, 10.0, 5.0)
set_square_lattice_positions!(sys)
print_system_data(sys)
p1 = plot_positions(sys)
# evolve the system and watch them "crystallize"
# into a triangular lattice formation
evolve!(sys, 20.0)
print_system_data(sys)
p2 = plot_trajectories(sys, collect(1:100))
# now, increase the temperature of the system by giving the particles
# some velocity. evolve the system and plot the trajectories.
set_random_velocities!(sys)
evolve!(sys, 60.0)
print_system_data(sys)
p3 = plot_trajectories(sys, collect(1:100))
# some more plots
p4 = plot_energy(sys, 0.0)
p5 = plot_temperature(sys)
p6 = plot_speed_distribution(sys, 20)
# make gif
if gif == 1
animate(sys, 1)
end
plot(
p1, p2, p3, p4, p5, p6,
layout = (2,3),
size = (1280,720)
)
end
function problem_9_2()
println("\nProblem 9.2")
println("----------------------------------------")
sys = ParticleSystem[]
# array for speed distribution plots
ps = Plots.Plot{Plots.GRBackend}[]
# array for trajectory plots
pt = Plots.Plot{Plots.GRBackend}[]
# initialize three systems with different initial conditions
# but same KE and PE, evolve, and save plots
for i = 1:3
push!(sys, ParticleSystem(81, 1000.0, 1.0)) # large box so particles are far away
println("\nSYSTEM $i")
print_system_parameters(sys[i])
if i == 1
set_square_lattice_positions!(sys[i])
elseif i == 2
set_triangular_lattice_positions!(sys[i])
elseif i == 3
set_random_positions!(sys[i])
else
println("oops")
exit()
end
# add_position_jitter!(sys[i])
set_random_velocities!(sys[i])
print_system_data(sys[i])
evolve!(sys[i], 300.0)
print_system_data(sys[i])
push!(ps, plot_speed_distribution(sys[i], 2, "speed distribution over time, system $i"))
push!(pt, plot_trajectories(sys[i], collect(1:64), "initial positions of particles, system $i"))
end
# plot speed distribution and trajectory plots
plot(
pt[1], ps[1],
pt[2], ps[2],
pt[3], ps[3],
layout = (3,2),
size = (1080,1200)
)
savefig("problem_9_2_long-255p.png")
end
# demo_0()
problem_9_2()
|