aboutsummaryrefslogtreecommitdiff
path: root/hw7/8-12.jl
blob: b10d94189efaf6a91594071d29b43616722c6a06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/Applications/Julia-1.7.app/Contents/Resources/julia/bin/julia

using Statistics
using Plots

function wrap_index(i::Int, l::Int)::Int
	wrap = (i - 1) % l + 1
	return (wrap <= 0) ? l + wrap : wrap
end

mutable struct Ising2D
	l::Int
	n::Int
	temperature::Float64
	w::Vector{Float64} # Boltzmann weights
	state::Matrix
	energy::Float64
	magnetization::Int
	mc_steps::Int
	accepted_moves::Int
	energy_array::Vector{Float64}
	magnetization_array::Vector{Int}
	H::Float64
end

Ising2D(l::Int, temperature::Float64, H = 1.0) = begin
	n = l^2
	w = zeros(9)
	w[9] = exp(-8.0 / temperature)
	w[5] = exp(-4.0 / temperature)
	state = ones(Int, l, l) # initially all spins up
	energy = Float64(-2 * n + 2 * H * n)
	magnetization = n
	return Ising2D(l, n, temperature, w, state, energy, magnetization, 0, 0,
		Int[], Int[], H)
end

function reset!(ising::Ising2D)
	ising.mc_steps = 0
	ising.accepted_moves = 0
	ising.energy_array = Int[]
	ising.magnetization_array = Int[]
end

function mc_step!(ising::Ising2D)
	l::Int = ising.l
	n::Int = ising.n
	w = ising.w

	state = ising.state
	accepted_moves = ising.accepted_moves
	energy = ising.energy
	magnetization = ising.magnetization

	random_positions = l * rand(2 * n)
	random_array = rand(n)

	for k in 1:n
		i = trunc(Int, random_positions[2*k-1]) + 1
		j = trunc(Int, random_positions[2*k]) + 1

		changed_spins = state[i, j] * (state[i%l+1, j] +
									   state[wrap_index(i - 1, l), j] + state[i, j%l+1] +
									   state[i, wrap_index(j - 1, l)])
		de = 2 * changed_spins + 2 * ising.H * state[i, j]

		if de <= 0 || rand() < exp(-de / ising.temperature)
			accepted_moves += 1
			new_spin = -state[i, j] # flip spin
			state[i, j] = new_spin

			# add the effects of the new spin
			energy += de
			magnetization += 2 * new_spin
		end

	end

	ising.state = state
	ising.accepted_moves = accepted_moves
	ising.energy = energy
	ising.magnetization = magnetization

	append!(ising.energy_array, ising.energy)
	append!(ising.magnetization_array, ising.magnetization)
	ising.mc_steps = ising.mc_steps + 1
end

function steps!(ising::Ising2D, num::Int = 100)
	for i in 1:num
		mc_step!(ising)
	end
end

function mean_energy(ising::Ising2D)
	return mean(ising.energy_array) / ising.n
end

function specific_heat(ising::Ising2D)
	return (std(ising.energy_array) / ising.temperature)^2 / ising.n
end

function mean_magnetization(ising::Ising2D)
	return mean(ising.magnetization_array) / ising.n
end

function susceptibility(ising::Ising2D)
	return (std(ising.magnetization_array))^2 / (ising.temperature * ising.n)
end

function observables(ising::Ising2D)
	printstyled("Temperature\t\t", bold = true)
	print(ising.temperature)
	print("\n")

	printstyled("Mean Energy\t\t", bold = true)
	print(mean_energy(ising))
	print("\n")

	printstyled("Mean Magnetiz.\t\t", bold = true)
	print(mean_magnetization(ising))
	print("\n")

	printstyled("Specific Heat\t\t", bold = true)
	print(specific_heat(ising))
	print("\n")

	printstyled("Susceptibility\t\t", bold = true)
	print(susceptibility(ising))
	print("\n")

	printstyled("MC Steps\t\t", bold = true)
	print(ising.mc_steps)
	print("\n")
	printstyled("Accepted Moves\t\t", bold = true)
	print(ising.accepted_moves)
	print("\n")
end


function plot_ising(state::Matrix{Int})
	pos = Tuple.(findall(>(0), state))
	neg = Tuple.(findall(<(0), state))
	scatter(pos, markersize = 5)
	scatter!(neg, markersize = 5)
end

function find_m(H::Float64, l::Int, num::Int, T::Float64)
	m = Ising2D(l, T, H)
	steps!(m, num)
	print("T = $T\n")
	print("H = $H\n")
	print("Mean Energy: $(mean_energy(m))\n")
	print("Mean Magnetization: $(mean_magnetization(m))\n\n")
	return mean_magnetization(m)
end

function map_h_to_m(H_range::Vector{Float64}, l::Int, num::Int, T::Float64)
	m = []
	for H in H_range
		push!(m, find_m(H, l, num, T))
	end
	return m
end

function do_linear_regression(x::Vector{Float64}, y::Vector{Float64})
	n = length(x)
	 = mean(x)
	 = mean(y)
	Σxy = sum((x .- ) .* (y .- ))
	Σx² = sum((x .- ) .^ 2)
	b = Σxy / Σx²
	a =  - b * 
	return a, b
end

function plot_log_of_m_and_h(H_range::Vector{Float64}, l::Int, num::Int, T = 2.27)
	m = map_h_to_m(H_range, l, num, T)
	p = scatter(H_range, m, label = "M vs H", xlabel = "H", ylabel = "M", title = "Magnetization (M) vs Field (B) for Ising Model at T_c", scale = :ln)

	# get the linear regression of the log
	log_h = log.(H_range)
	log_m = log.(m)
	a, b = do_linear_regression(log_h, log_m)
	println("a: $a, b: $b")
	# plot the linear regression
	plot!(p, H_range, exp.(a) .* H_range .^ b, label = "linear regression = $(round(a, digits=3)) + $(round(b, digits=3))x", line = :dash, color = :red)

	savefig(p, "hw7/magnetization_vs_field.png")
	return p
end

# textbook rec
h_range = 0.02:0.02:0.2
h_range = collect(h_range)
T = 2.27 # T_c for this system
side = 64
steps = 5000
plot_log_of_m_and_h(h_range, side, steps)