aboutsummaryrefslogtreecommitdiff
path: root/hw7/Laplacians.jl
blob: 10f0d481cd98f1fb14865c68e72e3ae598c85523 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
using Pkg
Pkg.add("Plots")
using Plots

function del2_5(a::Matrix{Float64}, dx=1.0)
    #=
    Returns a finite-difference approximation of the laplacian of the array a, 
    with lattice spacing dx, using the five-point stencil: 
    
                    0 1 0 
                    1 -4 1 
                    0 1 0 
    =#

    del2 = zeros(size(a))
    del2[2:end-1, 2:end-1] .= (a[2:end-1, 3:end] + a[2:end-1, 1:end-2] +
                               a[3:end, 2:end-1] + a[1:end-2, 2:end-1] - 
                               4.0 * a[2:end-1, 2:end-1]) ./ (dx^2)
    return del2
end

function del2_9(a::Matrix{Float64}, dx=1.0)
    #=
    Returns a finite-difference approximation of the laplacian of the array a, 
    with lattice spacing dx, using the nine-point stencil: 
    
                    1/6 2/3 1/6 
                    2/3 -10/3 2/3 
                    1/6 2/3 1/6 
    =#

    del2 = zeros(size(a))
    del2[2:end-1, 2:end-1] .= (4.0 * (a[2:end-1, 3:end] + a[2:end-1, 1:end-2] +
                                      a[3:end, 2:end-1] + a[1:end-2, 2:end-1]) + 
                               (a[1:end-2, 1:end-2] + a[1:end-2, 3:end] +
                                a[3:end, 1:end-2] + a[3:end, 3:end]) - 
                               20.0 * a[2:end-1, 2:end-1]) ./ (6.0 * dx^2)
    return del2
end

function invDel2_5(b::Matrix{Float64}, dx=1.0, N=10000)
    #=
    Relaxes over N steps to a discrete approximation of the inverse laplacian 
    of the source term b, each step is a weighted average over the four neighboring 
    points and the source. This is the Jacobi algorithm.
    =#

    invDel2 = zeros(size(b))
    newInvDel2 = zeros(size(b))
    
    for m in 1:N
        newInvDel2[2:end-1, 2:end-1] .= 0.25 * (invDel2[2:end-1, 3:end] + 
                                                 invDel2[2:end-1, 1:end-2] +
                                                 invDel2[3:end, 2:end-1] +
                                                 invDel2[1:end-2, 2:end-1] - 
                                                 (dx^2) * b[2:end-1, 2:end-1])
        invDel2 .= newInvDel2
    end
    
    diff = del2_5(invDel2, dx) - b
    diffSq = diff .* diff
    error = sqrt(sum(diffSq))
    
    println("\nerror = ", error)
    
    return invDel2
end


# Define variables
L = 10
dx = 1.0

# Parabola of revolution has constant Laplacian
phi = zeros((L, L))
for i = 1:L
    x = (i + 0.5 - 0.5 * L) * dx
    for j = 1:L
        y = (j + 0.5 - 0.5 * L) * dx
        phi[i, j] = x^2 + y^2
    end
end

println(size(phi))

println(del2_5(phi, dx))

println("\n\n")

println(del2_9(phi, dx))

# Electrostatics example: uniformly charged cylinder (rho = 1) of radius R
L = 100
dx = 1.0
R = 20.0
R2 = R^2

# Charge distribution
rho = zeros((L, L))
for i = 1:L
    x = (i + 0.5 - 0.5 * L) * dx
    for j = 1:L
        y = (j + 0.5 - 0.5 * L) * dx
        r2 = x^2 + y^2
        if r2 < R2
            rho[i, j] = 1.0
        else
            rho[i, j] = 0.0
        end
    end
end

rhoPlot = plot(rho[Int(L/2), :])

# Exact (analytical) electric potential
phi = zeros((L, L))
for i = 1:L
    x = (i + 0.5 - 0.5 * L) * dx
    for j = 1:L
        y = (j + 0.5 - 0.5 * L) * dx
        r2 = x^2 + y^2
        if r2 < R2
            phi[i, j] = -π * r2 
        else
            phi[i, j] = -π * (R2 + R2*log(r2/R2))
        end
    end
end

phiPlot = plot(phi[Int(L/2), :])

# Charge density obtained from exact potential
rho = -1.0/(4.0 * π) * del2_5(phi, dx)
rhoPlotLattice = plot(rho[Int(L/2), :])

phi = invDel2_5(-4.0 * π * rho, dx, 20000)
#phi = invDelSOR(-4.0 * π * rho, dx, 500)
phi .-= phi[Int(L/2), Int(L/2)]

phiPlotInvDel = plot(phi[Int(L/2), :])

contourf(phi)

#plot(rhoPlot, rhoPlotLattice)
#plot(phiPlot, phiPlotInvDel)