aboutsummaryrefslogtreecommitdiff
path: root/venv/lib/python3.8/site-packages/dash/development/_py_components_generation.py
blob: 7b23066fafee2df7c80b5a158b40e7d25840ed18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
from collections import OrderedDict
import copy
import numbers
import os
import typing
from textwrap import fill, dedent

from typing_extensions import TypedDict, NotRequired, Literal
from dash.development.base_component import _explicitize_args
from dash.exceptions import NonExistentEventException
from ._all_keywords import python_keywords
from ._collect_nodes import collect_nodes, filter_base_nodes
from ._py_prop_typing import (
    get_custom_ignore,
    get_custom_props,
    get_prop_typing,
    shapes,
    get_custom_imports,
)
from .base_component import Component, ComponentType

import_string = """# AUTO GENERATED FILE - DO NOT EDIT

import typing  # noqa: F401
from typing_extensions import TypedDict, NotRequired, Literal # noqa: F401
from dash.development.base_component import Component, _explicitize_args
{custom_imports}
ComponentType = typing.Union[
    str,
    int,
    float,
    Component,
    None,
    typing.Sequence[typing.Union[str, int, float, Component, None]],
]

NumberType = typing.Union[
    typing.SupportsFloat, typing.SupportsInt, typing.SupportsComplex
]


"""


# pylint: disable=unused-argument,too-many-locals,too-many-branches
def generate_class_string(
    typename,
    props,
    description,
    namespace,
    prop_reorder_exceptions=None,
    max_props=None,
    custom_typing_module=None,
):
    """Dynamically generate class strings to have nicely formatted docstrings,
    keyword arguments, and repr.
    Inspired by http://jameso.be/2013/08/06/namedtuple.html
    Parameters
    ----------
    typename
    props
    description
    namespace
    prop_reorder_exceptions
    Returns
    -------
    string
    """
    # TODO _prop_names, _type, _namespace, and available_properties
    # can be modified by a Dash JS developer via setattr
    # TODO - Tab out the repr for the repr of these components to make it
    # look more like a hierarchical tree
    # TODO - Include "description" "defaultValue" in the repr and docstring
    #
    # TODO - Handle "required"
    #
    # TODO - How to handle user-given `null` values? I want to include
    # an expanded docstring like Dropdown(value=None, id=None)
    # but by templating in those None values, I have no way of knowing
    # whether a property is None because the user explicitly wanted
    # it to be `null` or whether that was just the default value.
    # The solution might be to deal with default values better although
    # not all component authors will supply those.
    c = '''class {typename}(Component):
    """{docstring}"""
    _children_props = {children_props}
    _base_nodes = {base_nodes}
    _namespace = '{namespace}'
    _type = '{typename}'
{shapes}

    def __init__(
        self,
        {default_argtext}
    ):
        self._prop_names = {list_of_valid_keys}
        self._valid_wildcard_attributes =\
            {list_of_valid_wildcard_attr_prefixes}
        self.available_properties = {list_of_valid_keys}
        self.available_wildcard_properties =\
            {list_of_valid_wildcard_attr_prefixes}
        _explicit_args = kwargs.pop('_explicit_args')
        _locals = locals()
        _locals.update(kwargs)  # For wildcard attrs and excess named props
        args = {args}
        {required_validation}
        super({typename}, self).__init__({argtext})

setattr({typename}, "__init__", _explicitize_args({typename}.__init__))
'''

    filtered_props = (
        filter_props(props)
        if (prop_reorder_exceptions is not None and typename in prop_reorder_exceptions)
        or (prop_reorder_exceptions is not None and "ALL" in prop_reorder_exceptions)
        else reorder_props(filter_props(props))
    )
    wildcard_prefixes = repr(parse_wildcards(props))
    list_of_valid_keys = repr(list(map(str, filtered_props.keys())))
    custom_ignore = get_custom_ignore(custom_typing_module)
    docstring = create_docstring(
        component_name=typename,
        props=filtered_props,
        description=description,
        prop_reorder_exceptions=prop_reorder_exceptions,
        ignored_props=custom_ignore,
    ).replace("\r\n", "\n")
    required_args = required_props(filtered_props)
    is_children_required = "children" in required_args
    required_args = [arg for arg in required_args if arg != "children"]

    prohibit_events(props)

    # pylint: disable=unused-variable
    prop_keys = list(props.keys())
    if "children" in props and "children" in list_of_valid_keys:
        prop_keys.remove("children")
        # TODO For dash 3.0, remove the Optional and = None for proper typing.
        #  Also add the other required props after children.
        default_argtext = f"children: typing.Optional[{get_prop_typing('node', '', '', {})}] = None,\n        "
        args = "{k: _locals[k] for k in _explicit_args if k != 'children'}"
        argtext = "children=children, **args"
    else:
        default_argtext = ""
        args = "{k: _locals[k] for k in _explicit_args}"
        argtext = "**args"

    if len(required_args) == 0:
        required_validation = ""
    else:
        required_validation = f"""
        for k in {required_args}:
            if k not in args:
                raise TypeError(
                    'Required argument `' + k + '` was not specified.')
        """

    if is_children_required:
        required_validation += """
        if 'children' not in _explicit_args:
            raise TypeError('Required argument children was not specified.')
        """

    default_arglist = []

    for prop_key in prop_keys:
        prop = props[prop_key]
        if (
            prop_key.endswith("-*")
            or prop_key in python_keywords
            or prop_key == "setProps"
        ):
            continue

        type_info = prop.get("type")

        if not type_info:
            print(f"Invalid prop type for typing: {prop_key}")
            default_arglist.append(f"{prop_key} = None")
            continue

        type_name = type_info.get("name")

        custom_props = get_custom_props(custom_typing_module)
        typed = get_prop_typing(
            type_name,
            typename,
            prop_key,
            type_info,
            custom_props=custom_props,
            custom_ignore=custom_ignore,
        )

        arg_value = f"{prop_key}: typing.Optional[{typed}] = None"

        default_arglist.append(arg_value)

    if max_props:
        final_max_props = max_props - (1 if "children" in props else 0)
        if len(default_arglist) > final_max_props:
            default_arglist = default_arglist[:final_max_props]
            docstring += (
                "\n\n"
                "Note: due to the large number of props for this component,\n"
                "not all of them appear in the constructor signature, but\n"
                "they may still be used as keyword arguments."
            )

    default_argtext += ",\n        ".join(default_arglist + ["**kwargs"])
    nodes = collect_nodes({k: v for k, v in props.items() if k != "children"})

    return dedent(
        c.format(
            typename=typename,
            namespace=namespace,
            filtered_props=filtered_props,
            list_of_valid_wildcard_attr_prefixes=wildcard_prefixes,
            list_of_valid_keys=list_of_valid_keys,
            docstring=docstring,
            default_argtext=default_argtext,
            args=args,
            argtext=argtext,
            required_validation=required_validation,
            children_props=nodes,
            base_nodes=filter_base_nodes(nodes) + ["children"],
            shapes="\n".join(shapes.get(typename, {}).values()),
        )
    )


def generate_class_file(
    typename,
    props,
    description,
    namespace,
    prop_reorder_exceptions=None,
    max_props=None,
    custom_typing_module="dash_prop_typing",
):
    """Generate a Python class file (.py) given a class string.
    Parameters
    ----------
    typename
    props
    description
    namespace
    prop_reorder_exceptions
    Returns
    -------
    """

    class_string = generate_class_string(
        typename,
        props,
        description,
        namespace,
        prop_reorder_exceptions,
        max_props,
        custom_typing_module,
    )

    custom_imp = get_custom_imports(custom_typing_module)
    custom_imp = custom_imp.get(typename) or custom_imp.get("*")

    if custom_imp:
        imports = import_string.format(
            custom_imports="\n" + "\n".join(custom_imp) + "\n\n"
        )
    else:
        imports = import_string.format(custom_imports="")

    file_name = f"{typename:s}.py"

    file_path = os.path.join(namespace, file_name)
    with open(file_path, "w", encoding="utf-8") as f:
        f.write(imports)
        f.write(class_string)

    print(f"Generated {file_name}")


def generate_imports(project_shortname, components):
    with open(
        os.path.join(project_shortname, "_imports_.py"), "w", encoding="utf-8"
    ) as f:
        component_imports = "\n".join(f"from .{x} import {x}" for x in components)
        all_list = ",\n".join(f'    "{x}"' for x in components)
        imports_string = f"{component_imports}\n\n__all__ = [\n{all_list}\n]"

        f.write(imports_string)


def generate_classes_files(project_shortname, metadata, *component_generators):
    components = []
    for component_path, component_data in metadata.items():
        component_name = component_path.split("/")[-1].split(".")[0]
        components.append(component_name)

        for generator in component_generators:
            generator(
                component_name,
                component_data["props"],
                component_data["description"],
                project_shortname,
            )

    return components


def generate_class(
    typename, props, description, namespace, prop_reorder_exceptions=None
):
    """Generate a Python class object given a class string.
    Parameters
    ----------
    typename
    props
    description
    namespace
    Returns
    -------
    """
    string = generate_class_string(
        typename, props, description, namespace, prop_reorder_exceptions
    )
    scope = {
        "Component": Component,
        "ComponentType": ComponentType,
        "_explicitize_args": _explicitize_args,
        "typing": typing,
        "numbers": numbers,
        "TypedDict": TypedDict,
        "NotRequired": NotRequired,
        "Literal": Literal,
        "NumberType": typing.Union[
            typing.SupportsFloat, typing.SupportsComplex, typing.SupportsInt
        ],
    }
    # pylint: disable=exec-used
    exec(string, scope)
    result = scope[typename]
    return result


def required_props(props):
    """Pull names of required props from the props object.
    Parameters
    ----------
    props: dict
    Returns
    -------
    list
        List of prop names (str) that are required for the Component
    """
    return [prop_name for prop_name, prop in list(props.items()) if prop["required"]]


def create_docstring(
    component_name,
    props,
    description,
    prop_reorder_exceptions=None,
    ignored_props=tuple(),
):
    """Create the Dash component docstring.
    Parameters
    ----------
    component_name: str
        Component name
    props: dict
        Dictionary with {propName: propMetadata} structure
    description: str
        Component description
    Returns
    -------
    str
        Dash component docstring
    """
    # Ensure props are ordered with children first
    props = (
        props
        if (
            prop_reorder_exceptions is not None
            and component_name in prop_reorder_exceptions
        )
        or (prop_reorder_exceptions is not None and "ALL" in prop_reorder_exceptions)
        else reorder_props(props)
    )

    n = "n" if component_name[0].lower() in "aeiou" else ""
    args = "\n".join(
        create_prop_docstring(
            prop_name=p,
            type_object=prop["type"] if "type" in prop else prop["flowType"],
            required=prop["required"],
            description=prop["description"],
            default=prop.get("defaultValue"),
            indent_num=0,
            is_flow_type="flowType" in prop and "type" not in prop,
        )
        for p, prop in filter_props(props, ignored_props).items()
    )

    return (
        f"A{n} {component_name} component.\n{description}\n\nKeyword arguments:\n{args}"
    )


def prohibit_events(props):
    """Events have been removed. Raise an error if we see dashEvents or
    fireEvents.
    Parameters
    ----------
    props: dict
        Dictionary with {propName: propMetadata} structure
    Raises
    -------
    ?
    """
    if "dashEvents" in props or "fireEvents" in props:
        raise NonExistentEventException(
            "Events are no longer supported by dash. Use properties instead, "
            "eg `n_clicks` instead of a `click` event."
        )


def parse_wildcards(props):
    """Pull out the wildcard attributes from the Component props.
    Parameters
    ----------
    props: dict
        Dictionary with {propName: propMetadata} structure
    Returns
    -------
    list
        List of Dash valid wildcard prefixes
    """
    list_of_valid_wildcard_attr_prefixes = []
    for wildcard_attr in ["data-*", "aria-*"]:
        if wildcard_attr in props:
            list_of_valid_wildcard_attr_prefixes.append(wildcard_attr[:-1])
    return list_of_valid_wildcard_attr_prefixes


def reorder_props(props):
    """If "children" is in props, then move it to the front to respect dash
    convention, then 'id', then the remaining props sorted by prop name
    Parameters
    ----------
    props: dict
        Dictionary with {propName: propMetadata} structure
    Returns
    -------
    dict
        Dictionary with {propName: propMetadata} structure
    """

    # Constructing an OrderedDict with duplicate keys, you get the order
    # from the first one but the value from the last.
    # Doing this to avoid mutating props, which can cause confusion.
    props1 = [("children", "")] if "children" in props else []
    props2 = [("id", "")] if "id" in props else []
    return OrderedDict(props1 + props2 + sorted(list(props.items())))


def filter_props(props, ignored_props=tuple()):
    """Filter props from the Component arguments to exclude:
        - Those without a "type" or a "flowType" field
        - Those with arg.type.name in {'func', 'symbol', 'instanceOf'}
    Parameters
    ----------
    props: dict
        Dictionary with {propName: propMetadata} structure
    Returns
    -------
    dict
        Filtered dictionary with {propName: propMetadata} structure
    Examples
    --------
    ```python
    prop_args = {
        'prop1': {
            'type': {'name': 'bool'},
            'required': False,
            'description': 'A description',
            'flowType': {},
            'defaultValue': {'value': 'false', 'computed': False},
        },
        'prop2': {'description': 'A prop without a type'},
        'prop3': {
            'type': {'name': 'func'},
            'description': 'A function prop',
        },
    }
    # filtered_prop_args is now
    # {
    #    'prop1': {
    #        'type': {'name': 'bool'},
    #        'required': False,
    #        'description': 'A description',
    #        'flowType': {},
    #        'defaultValue': {'value': 'false', 'computed': False},
    #    },
    # }
    filtered_prop_args = filter_props(prop_args)
    ```
    """
    filtered_props = copy.deepcopy(props)

    for arg_name, arg in list(filtered_props.items()):
        if arg_name in ignored_props or ("type" not in arg and "flowType" not in arg):
            filtered_props.pop(arg_name)
            continue

        # Filter out functions and instances --
        # these cannot be passed from Python
        if "type" in arg:  # These come from PropTypes
            arg_type = arg["type"]["name"]
            if arg_type in {"func", "symbol", "instanceOf"}:
                filtered_props.pop(arg_name)
        elif "flowType" in arg:  # These come from Flow & handled differently
            arg_type_name = arg["flowType"]["name"]
            if arg_type_name == "signature":
                # This does the same as the PropTypes filter above, but "func"
                # is under "type" if "name" is "signature" vs just in "name"
                if "type" not in arg["flowType"] or arg["flowType"]["type"] != "object":
                    filtered_props.pop(arg_name)
        else:
            raise ValueError

    return filtered_props


def fix_keywords(txt):
    """
    replaces javascript keywords true, false, null with Python keywords
    """
    fix_word = {"true": "True", "false": "False", "null": "None"}
    for js_keyword, python_keyword in fix_word.items():
        txt = txt.replace(js_keyword, python_keyword)
    return txt


# pylint: disable=too-many-arguments
# pylint: disable=too-many-locals
def create_prop_docstring(
    prop_name,
    type_object,
    required,
    description,
    default,
    indent_num,
    is_flow_type=False,
):
    """Create the Dash component prop docstring.
    Parameters
    ----------
    prop_name: str
        Name of the Dash component prop
    type_object: dict
        react-docgen-generated prop type dictionary
    required: bool
        Component is required?
    description: str
        Dash component description
    default: dict
        Either None if a default value is not defined, or
        dict containing the key 'value' that defines a
        default value for the prop
    indent_num: int
        Number of indents to use for the context block
        (creates 2 spaces for every indent)
    is_flow_type: bool
        Does the prop use Flow types? Otherwise, uses PropTypes
    Returns
    -------
    str
        Dash component prop docstring
    """
    py_type_name = js_to_py_type(
        type_object=type_object, is_flow_type=is_flow_type, indent_num=indent_num
    )
    indent_spacing = "  " * indent_num

    default = default["value"] if default else ""
    default = fix_keywords(default)

    is_required = "optional"
    if required:
        is_required = "required"
    elif default and default not in ["None", "{}", "[]"]:
        is_required = "default " + default.replace("\n", "")

    # formats description
    period = "." if description else ""
    description = description.strip().strip(".").replace('"', r"\"") + period
    desc_indent = indent_spacing + "    "
    description = fill(
        description,
        initial_indent=desc_indent,
        subsequent_indent=desc_indent,
        break_long_words=False,
        break_on_hyphens=False,
    )
    description = f"\n{description}" if description else ""
    colon = ":" if description else ""
    description = fix_keywords(description)

    if "\n" in py_type_name:
        # corrects the type
        dict_or_list = "list of dicts" if py_type_name.startswith("list") else "dict"

        # format and rewrite the intro to the nested dicts
        intro1, intro2, dict_descr = py_type_name.partition("with keys:")
        intro = f"`{prop_name}` is a {intro1}{intro2}"
        intro = fill(
            intro,
            initial_indent=desc_indent,
            subsequent_indent=desc_indent,
            break_long_words=False,
            break_on_hyphens=False,
        )

        # captures optional nested dict description and puts the "or" condition on a new line
        if "| dict with keys:" in dict_descr:
            dict_part1, dict_part2 = dict_descr.split(" |", 1)
            dict_part2 = "".join([desc_indent, "Or", dict_part2])
            dict_descr = f"{dict_part1}\n\n  {dict_part2}"

        # ensures indent is correct if there is a second nested list of dicts
        current_indent = dict_descr.lstrip("\n").find("-")
        if current_indent == len(indent_spacing):
            dict_descr = "".join(
                "\n\n    " + line for line in dict_descr.splitlines() if line != ""
            )

        return (
            f"\n{indent_spacing}- {prop_name} ({dict_or_list}; {is_required}){colon}"
            f"{description}"
            f"\n\n{intro}{dict_descr}"
        )
    tn = f"{py_type_name}; " if py_type_name else ""
    return f"\n{indent_spacing}- {prop_name} ({tn}{is_required}){colon}{description}"


def map_js_to_py_types_prop_types(type_object, indent_num):
    """Mapping from the PropTypes js type object to the Python type."""

    def shape_or_exact():
        return "dict with keys:\n" + "\n".join(
            create_prop_docstring(
                prop_name=prop_name,
                type_object=prop,
                required=prop["required"],
                description=prop.get("description", ""),
                default=prop.get("defaultValue"),
                indent_num=indent_num + 2,
            )
            for prop_name, prop in type_object["value"].items()
        )

    def array_of():
        inner = js_to_py_type(type_object["value"])
        if inner:
            return "list of " + (
                inner + "s"
                if inner.split(" ")[0] != "dict"
                else inner.replace("dict", "dicts", 1)
            )
        return "list"

    def tuple_of():
        elements = [js_to_py_type(element) for element in type_object["elements"]]
        return f"list of {len(elements)} elements: [{', '.join(elements)}]"

    return dict(
        array=lambda: "list",
        bool=lambda: "boolean",
        number=lambda: "number",
        string=lambda: "string",
        object=lambda: "dict",
        any=lambda: "boolean | number | string | dict | list",
        element=lambda: "dash component",
        node=lambda: "a list of or a singular dash component, string or number",
        # React's PropTypes.oneOf
        enum=lambda: (
            "a value equal to: "
            + ", ".join(str(t["value"]) for t in type_object["value"])
        ),
        # React's PropTypes.oneOfType
        union=lambda: " | ".join(
            js_to_py_type(subType)
            for subType in type_object["value"]
            if js_to_py_type(subType) != ""
        ),
        # React's PropTypes.arrayOf
        arrayOf=array_of,
        # React's PropTypes.objectOf
        objectOf=lambda: (
            "dict with strings as keys and values of type "
            + js_to_py_type(type_object["value"])
        ),
        # React's PropTypes.shape
        shape=shape_or_exact,
        # React's PropTypes.exact
        exact=shape_or_exact,
        tuple=tuple_of,
    )


def map_js_to_py_types_flow_types(type_object):
    """Mapping from the Flow js types to the Python type."""
    return dict(
        array=lambda: "list",
        boolean=lambda: "boolean",
        number=lambda: "number",
        string=lambda: "string",
        Object=lambda: "dict",
        any=lambda: "bool | number | str | dict | list",
        Element=lambda: "dash component",
        Node=lambda: "a list of or a singular dash component, string or number",
        # React's PropTypes.oneOfType
        union=lambda: " | ".join(
            js_to_py_type(subType)
            for subType in type_object["elements"]
            if js_to_py_type(subType) != ""
        ),
        # Flow's Array type
        Array=lambda: "list"
        + (
            f' of {js_to_py_type(type_object["elements"][0])}s'
            if js_to_py_type(type_object["elements"][0]) != ""
            else ""
        ),
        # React's PropTypes.shape
        signature=lambda indent_num: (
            "dict with keys:\n"
            + "\n".join(
                create_prop_docstring(
                    prop_name=prop["key"],
                    type_object=prop["value"],
                    required=prop["value"]["required"],
                    description=prop["value"].get("description", ""),
                    default=prop.get("defaultValue"),
                    indent_num=indent_num + 2,
                    is_flow_type=True,
                )
                for prop in type_object["signature"]["properties"]
            )
        ),
    )


def js_to_py_type(type_object, is_flow_type=False, indent_num=0):
    """Convert JS types to Python types for the component definition.
    Parameters
    ----------
    type_object: dict
        react-docgen-generated prop type dictionary
    is_flow_type: bool
        Does the prop use Flow types? Otherwise, uses PropTypes
    indent_num: int
        Number of indents to use for the docstring for the prop
    Returns
    -------
    str
        Python type string
    """

    js_type_name = type_object["name"]
    js_to_py_types = (
        map_js_to_py_types_flow_types(type_object=type_object)
        if is_flow_type
        else map_js_to_py_types_prop_types(
            type_object=type_object, indent_num=indent_num
        )
    )

    if (
        "computed" in type_object
        and type_object["computed"]
        or type_object.get("type", "") == "function"
    ):
        return ""
    if js_type_name in js_to_py_types:
        if js_type_name == "signature":  # This is a Flow object w/ signature
            return js_to_py_types[js_type_name](indent_num)  # type: ignore[reportCallIssue]
        # All other types
        return js_to_py_types[js_type_name]()  # type: ignore[reportCallIssue]
    return ""