aboutsummaryrefslogtreecommitdiff
path: root/venv/lib/python3.8/site-packages/narwhals/_ibis/dataframe.py
blob: 4e18fa6b1d59a1a7331adea01d2b18a7e8b0b9b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from __future__ import annotations

import operator
from typing import (
    TYPE_CHECKING,
    Any,
    Iterable,
    Iterator,
    Literal,
    Mapping,
    Sequence,
    cast,
)

import ibis
import ibis.expr.types as ir

from narwhals._ibis.utils import evaluate_exprs, native_to_narwhals_dtype
from narwhals._utils import (
    Implementation,
    Version,
    not_implemented,
    parse_columns_to_drop,
    parse_version,
    validate_backend_version,
)
from narwhals.exceptions import ColumnNotFoundError, InvalidOperationError
from narwhals.typing import CompliantLazyFrame

if TYPE_CHECKING:
    from types import ModuleType

    import pandas as pd
    import pyarrow as pa
    from ibis.expr.operations import Binary
    from typing_extensions import Self, TypeAlias, TypeIs

    from narwhals._compliant.typing import CompliantDataFrameAny
    from narwhals._ibis.expr import IbisExpr
    from narwhals._ibis.group_by import IbisGroupBy
    from narwhals._ibis.namespace import IbisNamespace
    from narwhals._ibis.series import IbisInterchangeSeries
    from narwhals._utils import _FullContext
    from narwhals.dataframe import LazyFrame
    from narwhals.dtypes import DType
    from narwhals.stable.v1 import DataFrame as DataFrameV1
    from narwhals.typing import AsofJoinStrategy, JoinStrategy, LazyUniqueKeepStrategy

    JoinPredicates: TypeAlias = "Sequence[ir.BooleanColumn] | Sequence[str]"


class IbisLazyFrame(
    CompliantLazyFrame[
        "IbisExpr", "ir.Table", "LazyFrame[ir.Table] | DataFrameV1[ir.Table]"
    ]
):
    _implementation = Implementation.IBIS

    def __init__(
        self, df: ir.Table, *, backend_version: tuple[int, ...], version: Version
    ) -> None:
        self._native_frame: ir.Table = df
        self._version = version
        self._backend_version = backend_version
        self._cached_schema: dict[str, DType] | None = None
        self._cached_columns: list[str] | None = None
        validate_backend_version(self._implementation, self._backend_version)

    @staticmethod
    def _is_native(obj: ir.Table | Any) -> TypeIs[ir.Table]:
        return isinstance(obj, ir.Table)

    @classmethod
    def from_native(cls, data: ir.Table, /, *, context: _FullContext) -> Self:
        return cls(
            data, backend_version=context._backend_version, version=context._version
        )

    def to_narwhals(self) -> LazyFrame[ir.Table] | DataFrameV1[ir.Table]:
        if self._version is Version.MAIN:
            return self._version.lazyframe(self, level="lazy")

        from narwhals.stable.v1 import DataFrame as DataFrameV1

        return DataFrameV1(self, level="interchange")

    def __narwhals_dataframe__(self) -> Self:  # pragma: no cover
        # Keep around for backcompat.
        if self._version is not Version.V1:
            msg = "__narwhals_dataframe__ is not implemented for IbisLazyFrame"
            raise AttributeError(msg)
        return self

    def __narwhals_lazyframe__(self) -> Self:
        return self

    def __native_namespace__(self) -> ModuleType:
        return ibis

    def __narwhals_namespace__(self) -> IbisNamespace:
        from narwhals._ibis.namespace import IbisNamespace

        return IbisNamespace(backend_version=self._backend_version, version=self._version)

    def get_column(self, name: str) -> IbisInterchangeSeries:
        from narwhals._ibis.series import IbisInterchangeSeries

        return IbisInterchangeSeries(self.native.select(name), version=self._version)

    def _iter_columns(self) -> Iterator[ir.Expr]:
        for name in self.columns:
            yield self.native[name]

    def collect(
        self, backend: ModuleType | Implementation | str | None, **kwargs: Any
    ) -> CompliantDataFrameAny:
        if backend is None or backend is Implementation.PYARROW:
            import pyarrow as pa  # ignore-banned-import

            from narwhals._arrow.dataframe import ArrowDataFrame

            return ArrowDataFrame(
                self.native.to_pyarrow(),
                backend_version=parse_version(pa),
                version=self._version,
                validate_column_names=True,
            )

        if backend is Implementation.PANDAS:
            import pandas as pd  # ignore-banned-import

            from narwhals._pandas_like.dataframe import PandasLikeDataFrame

            return PandasLikeDataFrame(
                self.native.to_pandas(),
                implementation=Implementation.PANDAS,
                backend_version=parse_version(pd),
                version=self._version,
                validate_column_names=True,
            )

        if backend is Implementation.POLARS:
            import polars as pl  # ignore-banned-import

            from narwhals._polars.dataframe import PolarsDataFrame

            return PolarsDataFrame(
                self.native.to_polars(),
                backend_version=parse_version(pl),
                version=self._version,
            )

        msg = f"Unsupported `backend` value: {backend}"  # pragma: no cover
        raise ValueError(msg)  # pragma: no cover

    def head(self, n: int) -> Self:
        return self._with_native(self.native.head(n))

    def simple_select(self, *column_names: str) -> Self:
        return self._with_native(self.native.select(*column_names))

    def aggregate(self, *exprs: IbisExpr) -> Self:
        selection = [
            cast("ir.Scalar", val.name(name))
            for name, val in evaluate_exprs(self, *exprs)
        ]
        return self._with_native(self.native.aggregate(selection))

    def select(self, *exprs: IbisExpr) -> Self:
        selection = [val.name(name) for name, val in evaluate_exprs(self, *exprs)]
        if not selection:
            msg = "At least one expression must be provided to `select` with the Ibis backend."
            raise ValueError(msg)

        t = self.native.select(*selection)
        return self._with_native(t)

    def drop(self, columns: Sequence[str], *, strict: bool) -> Self:
        columns_to_drop = parse_columns_to_drop(self, columns, strict=strict)
        selection = (col for col in self.columns if col not in columns_to_drop)
        return self._with_native(self.native.select(*selection))

    def lazy(self, *, backend: Implementation | None = None) -> Self:
        # The `backend`` argument has no effect but we keep it here for
        # backwards compatibility because in `narwhals.stable.v1`
        # function `.from_native()` will return a DataFrame for Ibis.

        if backend is not None:  # pragma: no cover
            msg = "`backend` argument is not supported for Ibis"
            raise ValueError(msg)
        return self

    def with_columns(self, *exprs: IbisExpr) -> Self:
        new_columns_map = dict(evaluate_exprs(self, *exprs))
        return self._with_native(self.native.mutate(**new_columns_map))

    def filter(self, predicate: IbisExpr) -> Self:
        # `[0]` is safe as the predicate's expression only returns a single column
        mask = cast("ir.BooleanValue", predicate(self)[0])
        return self._with_native(self.native.filter(mask))

    @property
    def schema(self) -> dict[str, DType]:
        if self._cached_schema is None:
            # Note: prefer `self._cached_schema` over `functools.cached_property`
            # due to Python3.13 failures.
            self._cached_schema = {
                name: native_to_narwhals_dtype(dtype, self._version)
                for name, dtype in self.native.schema().fields.items()
            }
        return self._cached_schema

    @property
    def columns(self) -> list[str]:
        if self._cached_columns is None:
            self._cached_columns = (
                list(self.schema)
                if self._cached_schema is not None
                else list(self.native.columns)
            )
        return self._cached_columns

    def to_pandas(self) -> pd.DataFrame:
        # only if version is v1, keep around for backcompat
        import pandas as pd  # ignore-banned-import()

        if parse_version(pd) >= (1, 0, 0):
            return self.native.to_pandas()
        else:  # pragma: no cover
            msg = f"Conversion to pandas requires pandas>=1.0.0, found {pd.__version__}"
            raise NotImplementedError(msg)

    def to_arrow(self) -> pa.Table:
        # only if version is v1, keep around for backcompat
        return self.native.to_pyarrow()

    def _with_version(self, version: Version) -> Self:
        return self.__class__(
            self.native, version=version, backend_version=self._backend_version
        )

    def _with_native(self, df: ir.Table) -> Self:
        return self.__class__(
            df, backend_version=self._backend_version, version=self._version
        )

    def group_by(
        self, keys: Sequence[str] | Sequence[IbisExpr], *, drop_null_keys: bool
    ) -> IbisGroupBy:
        from narwhals._ibis.group_by import IbisGroupBy

        return IbisGroupBy(self, keys, drop_null_keys=drop_null_keys)

    def rename(self, mapping: Mapping[str, str]) -> Self:
        def _rename(col: str) -> str:
            return mapping.get(col, col)

        return self._with_native(self.native.rename(_rename))

    @staticmethod
    def _join_drop_duplicate_columns(df: ir.Table, columns: Iterable[str], /) -> ir.Table:
        """Ibis adds a suffix to the right table col, even when it matches the left during a join."""
        duplicates = set(df.columns).intersection(columns)
        return df.drop(*duplicates) if duplicates else df

    def join(
        self,
        other: Self,
        *,
        how: JoinStrategy,
        left_on: Sequence[str] | None,
        right_on: Sequence[str] | None,
        suffix: str,
    ) -> Self:
        how_native = "outer" if how == "full" else how
        rname = "{name}" + suffix
        if other == self:
            # Ibis does not support self-references unless created as a view
            other = self._with_native(other.native.view())
        if how_native == "cross":
            joined = self.native.join(other.native, how=how_native, rname=rname)
            return self._with_native(joined)
        # help mypy
        assert left_on is not None  # noqa: S101
        assert right_on is not None  # noqa: S101
        predicates = self._convert_predicates(other, left_on, right_on)
        joined = self.native.join(other.native, predicates, how=how_native, rname=rname)
        if how_native == "left":
            right_names = (n + suffix for n in right_on)
            joined = self._join_drop_duplicate_columns(joined, right_names)
            it = (cast("Binary", p.op()) for p in predicates if not isinstance(p, str))
            to_drop = []
            for pred in it:
                right = pred.right.name
                # Mirrors how polars works.
                if right not in self.columns and pred.left.name != right:
                    to_drop.append(right)
            if to_drop:
                joined = joined.drop(*to_drop)
        return self._with_native(joined)

    def join_asof(
        self,
        other: Self,
        *,
        left_on: str,
        right_on: str,
        by_left: Sequence[str] | None,
        by_right: Sequence[str] | None,
        strategy: AsofJoinStrategy,
        suffix: str,
    ) -> Self:
        rname = "{name}" + suffix
        strategy_op = {"backward": operator.ge, "forward": operator.le}
        predicates: JoinPredicates = []
        if op := strategy_op.get(strategy):
            on: ir.BooleanColumn = op(self.native[left_on], other.native[right_on])
        else:
            msg = "Only `backward` and `forward` strategies are currently supported for Ibis"
            raise NotImplementedError(msg)
        if by_left is not None and by_right is not None:
            predicates = self._convert_predicates(other, by_left, by_right)
        joined = self.native.asof_join(other.native, on, predicates, rname=rname)
        joined = self._join_drop_duplicate_columns(joined, [right_on + suffix])
        if by_right is not None:
            right_names = (n + suffix for n in by_right)
            joined = self._join_drop_duplicate_columns(joined, right_names)
        return self._with_native(joined)

    def _convert_predicates(
        self, other: Self, left_on: Sequence[str], right_on: Sequence[str]
    ) -> JoinPredicates:
        if left_on == right_on:
            return left_on
        return [
            cast("ir.BooleanColumn", (self.native[left] == other.native[right]))
            for left, right in zip(left_on, right_on)
        ]

    def collect_schema(self) -> dict[str, DType]:
        return {
            name: native_to_narwhals_dtype(dtype, self._version)
            for name, dtype in self.native.schema().fields.items()
        }

    def unique(
        self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy
    ) -> Self:
        if subset_ := subset if keep == "any" else (subset or self.columns):
            # Sanitise input
            if any(x not in self.columns for x in subset_):
                msg = f"Columns {set(subset_).difference(self.columns)} not found in {self.columns}."
                raise ColumnNotFoundError(msg)

            mapped_keep: dict[str, Literal["first"] | None] = {
                "any": "first",
                "none": None,
            }
            to_keep = mapped_keep[keep]
            return self._with_native(self.native.distinct(on=subset_, keep=to_keep))
        return self._with_native(self.native.distinct(on=subset))

    def sort(self, *by: str, descending: bool | Sequence[bool], nulls_last: bool) -> Self:
        if isinstance(descending, bool):
            descending = [descending for _ in range(len(by))]

        sort_cols = []

        for i in range(len(by)):
            direction_fn = ibis.desc if descending[i] else ibis.asc
            col = direction_fn(by[i], nulls_first=not nulls_last)
            sort_cols.append(cast("ir.Column", col))

        return self._with_native(self.native.order_by(*sort_cols))

    def drop_nulls(self, subset: Sequence[str] | None) -> Self:
        subset_ = subset if subset is not None else self.columns
        return self._with_native(self.native.drop_null(subset_))

    def explode(self, columns: Sequence[str]) -> Self:
        dtypes = self._version.dtypes
        schema = self.collect_schema()
        for col in columns:
            dtype = schema[col]

            if dtype != dtypes.List:
                msg = (
                    f"`explode` operation not supported for dtype `{dtype}`, "
                    "expected List type"
                )
                raise InvalidOperationError(msg)

        if len(columns) != 1:
            msg = (
                "Exploding on multiple columns is not supported with Ibis backend since "
                "we cannot guarantee that the exploded columns have matching element counts."
            )
            raise NotImplementedError(msg)

        return self._with_native(self.native.unnest(columns[0], keep_empty=True))

    def unpivot(
        self,
        on: Sequence[str] | None,
        index: Sequence[str] | None,
        variable_name: str,
        value_name: str,
    ) -> Self:
        import ibis.selectors as s

        index_: Sequence[str] = [] if index is None else index
        on_: Sequence[str] = (
            [c for c in self.columns if c not in index_] if on is None else on
        )

        # Discard columns not in the index
        final_columns = list(dict.fromkeys([*index_, variable_name, value_name]))

        unpivoted = self.native.pivot_longer(
            s.cols(*on_), names_to=variable_name, values_to=value_name
        )
        return self._with_native(unpivoted.select(*final_columns))

    gather_every = not_implemented.deprecated(
        "`LazyFrame.gather_every` is deprecated and will be removed in a future version."
    )
    tail = not_implemented.deprecated(
        "`LazyFrame.tail` is deprecated and will be removed in a future version."
    )
    with_row_index = not_implemented()