1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
from __future__ import annotations
import operator
from typing import (
TYPE_CHECKING,
Any,
Iterable,
Iterator,
Literal,
Mapping,
Sequence,
cast,
)
import ibis
import ibis.expr.types as ir
from narwhals._ibis.utils import evaluate_exprs, native_to_narwhals_dtype
from narwhals._utils import (
Implementation,
Version,
not_implemented,
parse_columns_to_drop,
parse_version,
validate_backend_version,
)
from narwhals.exceptions import ColumnNotFoundError, InvalidOperationError
from narwhals.typing import CompliantLazyFrame
if TYPE_CHECKING:
from types import ModuleType
import pandas as pd
import pyarrow as pa
from ibis.expr.operations import Binary
from typing_extensions import Self, TypeAlias, TypeIs
from narwhals._compliant.typing import CompliantDataFrameAny
from narwhals._ibis.expr import IbisExpr
from narwhals._ibis.group_by import IbisGroupBy
from narwhals._ibis.namespace import IbisNamespace
from narwhals._ibis.series import IbisInterchangeSeries
from narwhals._utils import _FullContext
from narwhals.dataframe import LazyFrame
from narwhals.dtypes import DType
from narwhals.stable.v1 import DataFrame as DataFrameV1
from narwhals.typing import AsofJoinStrategy, JoinStrategy, LazyUniqueKeepStrategy
JoinPredicates: TypeAlias = "Sequence[ir.BooleanColumn] | Sequence[str]"
class IbisLazyFrame(
CompliantLazyFrame[
"IbisExpr", "ir.Table", "LazyFrame[ir.Table] | DataFrameV1[ir.Table]"
]
):
_implementation = Implementation.IBIS
def __init__(
self, df: ir.Table, *, backend_version: tuple[int, ...], version: Version
) -> None:
self._native_frame: ir.Table = df
self._version = version
self._backend_version = backend_version
self._cached_schema: dict[str, DType] | None = None
self._cached_columns: list[str] | None = None
validate_backend_version(self._implementation, self._backend_version)
@staticmethod
def _is_native(obj: ir.Table | Any) -> TypeIs[ir.Table]:
return isinstance(obj, ir.Table)
@classmethod
def from_native(cls, data: ir.Table, /, *, context: _FullContext) -> Self:
return cls(
data, backend_version=context._backend_version, version=context._version
)
def to_narwhals(self) -> LazyFrame[ir.Table] | DataFrameV1[ir.Table]:
if self._version is Version.MAIN:
return self._version.lazyframe(self, level="lazy")
from narwhals.stable.v1 import DataFrame as DataFrameV1
return DataFrameV1(self, level="interchange")
def __narwhals_dataframe__(self) -> Self: # pragma: no cover
# Keep around for backcompat.
if self._version is not Version.V1:
msg = "__narwhals_dataframe__ is not implemented for IbisLazyFrame"
raise AttributeError(msg)
return self
def __narwhals_lazyframe__(self) -> Self:
return self
def __native_namespace__(self) -> ModuleType:
return ibis
def __narwhals_namespace__(self) -> IbisNamespace:
from narwhals._ibis.namespace import IbisNamespace
return IbisNamespace(backend_version=self._backend_version, version=self._version)
def get_column(self, name: str) -> IbisInterchangeSeries:
from narwhals._ibis.series import IbisInterchangeSeries
return IbisInterchangeSeries(self.native.select(name), version=self._version)
def _iter_columns(self) -> Iterator[ir.Expr]:
for name in self.columns:
yield self.native[name]
def collect(
self, backend: ModuleType | Implementation | str | None, **kwargs: Any
) -> CompliantDataFrameAny:
if backend is None or backend is Implementation.PYARROW:
import pyarrow as pa # ignore-banned-import
from narwhals._arrow.dataframe import ArrowDataFrame
return ArrowDataFrame(
self.native.to_pyarrow(),
backend_version=parse_version(pa),
version=self._version,
validate_column_names=True,
)
if backend is Implementation.PANDAS:
import pandas as pd # ignore-banned-import
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
return PandasLikeDataFrame(
self.native.to_pandas(),
implementation=Implementation.PANDAS,
backend_version=parse_version(pd),
version=self._version,
validate_column_names=True,
)
if backend is Implementation.POLARS:
import polars as pl # ignore-banned-import
from narwhals._polars.dataframe import PolarsDataFrame
return PolarsDataFrame(
self.native.to_polars(),
backend_version=parse_version(pl),
version=self._version,
)
msg = f"Unsupported `backend` value: {backend}" # pragma: no cover
raise ValueError(msg) # pragma: no cover
def head(self, n: int) -> Self:
return self._with_native(self.native.head(n))
def simple_select(self, *column_names: str) -> Self:
return self._with_native(self.native.select(*column_names))
def aggregate(self, *exprs: IbisExpr) -> Self:
selection = [
cast("ir.Scalar", val.name(name))
for name, val in evaluate_exprs(self, *exprs)
]
return self._with_native(self.native.aggregate(selection))
def select(self, *exprs: IbisExpr) -> Self:
selection = [val.name(name) for name, val in evaluate_exprs(self, *exprs)]
if not selection:
msg = "At least one expression must be provided to `select` with the Ibis backend."
raise ValueError(msg)
t = self.native.select(*selection)
return self._with_native(t)
def drop(self, columns: Sequence[str], *, strict: bool) -> Self:
columns_to_drop = parse_columns_to_drop(self, columns, strict=strict)
selection = (col for col in self.columns if col not in columns_to_drop)
return self._with_native(self.native.select(*selection))
def lazy(self, *, backend: Implementation | None = None) -> Self:
# The `backend`` argument has no effect but we keep it here for
# backwards compatibility because in `narwhals.stable.v1`
# function `.from_native()` will return a DataFrame for Ibis.
if backend is not None: # pragma: no cover
msg = "`backend` argument is not supported for Ibis"
raise ValueError(msg)
return self
def with_columns(self, *exprs: IbisExpr) -> Self:
new_columns_map = dict(evaluate_exprs(self, *exprs))
return self._with_native(self.native.mutate(**new_columns_map))
def filter(self, predicate: IbisExpr) -> Self:
# `[0]` is safe as the predicate's expression only returns a single column
mask = cast("ir.BooleanValue", predicate(self)[0])
return self._with_native(self.native.filter(mask))
@property
def schema(self) -> dict[str, DType]:
if self._cached_schema is None:
# Note: prefer `self._cached_schema` over `functools.cached_property`
# due to Python3.13 failures.
self._cached_schema = {
name: native_to_narwhals_dtype(dtype, self._version)
for name, dtype in self.native.schema().fields.items()
}
return self._cached_schema
@property
def columns(self) -> list[str]:
if self._cached_columns is None:
self._cached_columns = (
list(self.schema)
if self._cached_schema is not None
else list(self.native.columns)
)
return self._cached_columns
def to_pandas(self) -> pd.DataFrame:
# only if version is v1, keep around for backcompat
import pandas as pd # ignore-banned-import()
if parse_version(pd) >= (1, 0, 0):
return self.native.to_pandas()
else: # pragma: no cover
msg = f"Conversion to pandas requires pandas>=1.0.0, found {pd.__version__}"
raise NotImplementedError(msg)
def to_arrow(self) -> pa.Table:
# only if version is v1, keep around for backcompat
return self.native.to_pyarrow()
def _with_version(self, version: Version) -> Self:
return self.__class__(
self.native, version=version, backend_version=self._backend_version
)
def _with_native(self, df: ir.Table) -> Self:
return self.__class__(
df, backend_version=self._backend_version, version=self._version
)
def group_by(
self, keys: Sequence[str] | Sequence[IbisExpr], *, drop_null_keys: bool
) -> IbisGroupBy:
from narwhals._ibis.group_by import IbisGroupBy
return IbisGroupBy(self, keys, drop_null_keys=drop_null_keys)
def rename(self, mapping: Mapping[str, str]) -> Self:
def _rename(col: str) -> str:
return mapping.get(col, col)
return self._with_native(self.native.rename(_rename))
@staticmethod
def _join_drop_duplicate_columns(df: ir.Table, columns: Iterable[str], /) -> ir.Table:
"""Ibis adds a suffix to the right table col, even when it matches the left during a join."""
duplicates = set(df.columns).intersection(columns)
return df.drop(*duplicates) if duplicates else df
def join(
self,
other: Self,
*,
how: JoinStrategy,
left_on: Sequence[str] | None,
right_on: Sequence[str] | None,
suffix: str,
) -> Self:
how_native = "outer" if how == "full" else how
rname = "{name}" + suffix
if other == self:
# Ibis does not support self-references unless created as a view
other = self._with_native(other.native.view())
if how_native == "cross":
joined = self.native.join(other.native, how=how_native, rname=rname)
return self._with_native(joined)
# help mypy
assert left_on is not None # noqa: S101
assert right_on is not None # noqa: S101
predicates = self._convert_predicates(other, left_on, right_on)
joined = self.native.join(other.native, predicates, how=how_native, rname=rname)
if how_native == "left":
right_names = (n + suffix for n in right_on)
joined = self._join_drop_duplicate_columns(joined, right_names)
it = (cast("Binary", p.op()) for p in predicates if not isinstance(p, str))
to_drop = []
for pred in it:
right = pred.right.name
# Mirrors how polars works.
if right not in self.columns and pred.left.name != right:
to_drop.append(right)
if to_drop:
joined = joined.drop(*to_drop)
return self._with_native(joined)
def join_asof(
self,
other: Self,
*,
left_on: str,
right_on: str,
by_left: Sequence[str] | None,
by_right: Sequence[str] | None,
strategy: AsofJoinStrategy,
suffix: str,
) -> Self:
rname = "{name}" + suffix
strategy_op = {"backward": operator.ge, "forward": operator.le}
predicates: JoinPredicates = []
if op := strategy_op.get(strategy):
on: ir.BooleanColumn = op(self.native[left_on], other.native[right_on])
else:
msg = "Only `backward` and `forward` strategies are currently supported for Ibis"
raise NotImplementedError(msg)
if by_left is not None and by_right is not None:
predicates = self._convert_predicates(other, by_left, by_right)
joined = self.native.asof_join(other.native, on, predicates, rname=rname)
joined = self._join_drop_duplicate_columns(joined, [right_on + suffix])
if by_right is not None:
right_names = (n + suffix for n in by_right)
joined = self._join_drop_duplicate_columns(joined, right_names)
return self._with_native(joined)
def _convert_predicates(
self, other: Self, left_on: Sequence[str], right_on: Sequence[str]
) -> JoinPredicates:
if left_on == right_on:
return left_on
return [
cast("ir.BooleanColumn", (self.native[left] == other.native[right]))
for left, right in zip(left_on, right_on)
]
def collect_schema(self) -> dict[str, DType]:
return {
name: native_to_narwhals_dtype(dtype, self._version)
for name, dtype in self.native.schema().fields.items()
}
def unique(
self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy
) -> Self:
if subset_ := subset if keep == "any" else (subset or self.columns):
# Sanitise input
if any(x not in self.columns for x in subset_):
msg = f"Columns {set(subset_).difference(self.columns)} not found in {self.columns}."
raise ColumnNotFoundError(msg)
mapped_keep: dict[str, Literal["first"] | None] = {
"any": "first",
"none": None,
}
to_keep = mapped_keep[keep]
return self._with_native(self.native.distinct(on=subset_, keep=to_keep))
return self._with_native(self.native.distinct(on=subset))
def sort(self, *by: str, descending: bool | Sequence[bool], nulls_last: bool) -> Self:
if isinstance(descending, bool):
descending = [descending for _ in range(len(by))]
sort_cols = []
for i in range(len(by)):
direction_fn = ibis.desc if descending[i] else ibis.asc
col = direction_fn(by[i], nulls_first=not nulls_last)
sort_cols.append(cast("ir.Column", col))
return self._with_native(self.native.order_by(*sort_cols))
def drop_nulls(self, subset: Sequence[str] | None) -> Self:
subset_ = subset if subset is not None else self.columns
return self._with_native(self.native.drop_null(subset_))
def explode(self, columns: Sequence[str]) -> Self:
dtypes = self._version.dtypes
schema = self.collect_schema()
for col in columns:
dtype = schema[col]
if dtype != dtypes.List:
msg = (
f"`explode` operation not supported for dtype `{dtype}`, "
"expected List type"
)
raise InvalidOperationError(msg)
if len(columns) != 1:
msg = (
"Exploding on multiple columns is not supported with Ibis backend since "
"we cannot guarantee that the exploded columns have matching element counts."
)
raise NotImplementedError(msg)
return self._with_native(self.native.unnest(columns[0], keep_empty=True))
def unpivot(
self,
on: Sequence[str] | None,
index: Sequence[str] | None,
variable_name: str,
value_name: str,
) -> Self:
import ibis.selectors as s
index_: Sequence[str] = [] if index is None else index
on_: Sequence[str] = (
[c for c in self.columns if c not in index_] if on is None else on
)
# Discard columns not in the index
final_columns = list(dict.fromkeys([*index_, variable_name, value_name]))
unpivoted = self.native.pivot_longer(
s.cols(*on_), names_to=variable_name, values_to=value_name
)
return self._with_native(unpivoted.select(*final_columns))
gather_every = not_implemented.deprecated(
"`LazyFrame.gather_every` is deprecated and will be removed in a future version."
)
tail = not_implemented.deprecated(
"`LazyFrame.tail` is deprecated and will be removed in a future version."
)
with_row_index = not_implemented()
|