1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
from __future__ import annotations
from typing import TYPE_CHECKING, Sequence
from narwhals._compliant import EagerExpr
from narwhals._expression_parsing import evaluate_output_names_and_aliases
from narwhals._pandas_like.group_by import PandasLikeGroupBy
from narwhals._pandas_like.series import PandasLikeSeries
from narwhals._utils import generate_temporary_column_name
if TYPE_CHECKING:
from typing_extensions import Self
from narwhals._compliant.typing import AliasNames, EvalNames, EvalSeries, ScalarKwargs
from narwhals._expression_parsing import ExprMetadata
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
from narwhals._pandas_like.namespace import PandasLikeNamespace
from narwhals._utils import Implementation, Version, _FullContext
from narwhals.typing import (
FillNullStrategy,
NonNestedLiteral,
PythonLiteral,
RankMethod,
)
WINDOW_FUNCTIONS_TO_PANDAS_EQUIVALENT = {
"cum_sum": "cumsum",
"cum_min": "cummin",
"cum_max": "cummax",
"cum_prod": "cumprod",
# Pandas cumcount starts counting from 0 while Polars starts from 1
# Pandas cumcount counts nulls while Polars does not
# So, instead of using "cumcount" we use "cumsum" on notna() to get the same result
"cum_count": "cumsum",
"rolling_sum": "sum",
"rolling_mean": "mean",
"rolling_std": "std",
"rolling_var": "var",
"shift": "shift",
"rank": "rank",
"diff": "diff",
"fill_null": "fillna",
}
def window_kwargs_to_pandas_equivalent(
function_name: str, kwargs: ScalarKwargs
) -> dict[str, PythonLiteral]:
if function_name == "shift":
assert "n" in kwargs # noqa: S101
pandas_kwargs: dict[str, PythonLiteral] = {"periods": kwargs["n"]}
elif function_name == "rank":
assert "method" in kwargs # noqa: S101
assert "descending" in kwargs # noqa: S101
_method = kwargs["method"]
pandas_kwargs = {
"method": "first" if _method == "ordinal" else _method,
"ascending": not kwargs["descending"],
"na_option": "keep",
"pct": False,
}
elif function_name.startswith("cum_"): # Cumulative operation
pandas_kwargs = {"skipna": True}
elif function_name.startswith("rolling_"): # Rolling operation
assert "min_samples" in kwargs # noqa: S101
assert "window_size" in kwargs # noqa: S101
assert "center" in kwargs # noqa: S101
pandas_kwargs = {
"min_periods": kwargs["min_samples"],
"window": kwargs["window_size"],
"center": kwargs["center"],
}
elif function_name in {"std", "var"}:
assert "ddof" in kwargs # noqa: S101
pandas_kwargs = {"ddof": kwargs["ddof"]}
elif function_name == "fill_null":
assert "strategy" in kwargs # noqa: S101
assert "limit" in kwargs # noqa: S101
pandas_kwargs = {"strategy": kwargs["strategy"], "limit": kwargs["limit"]}
else: # sum, len, ...
pandas_kwargs = {}
return pandas_kwargs
class PandasLikeExpr(EagerExpr["PandasLikeDataFrame", PandasLikeSeries]):
def __init__(
self,
call: EvalSeries[PandasLikeDataFrame, PandasLikeSeries],
*,
depth: int,
function_name: str,
evaluate_output_names: EvalNames[PandasLikeDataFrame],
alias_output_names: AliasNames | None,
implementation: Implementation,
backend_version: tuple[int, ...],
version: Version,
scalar_kwargs: ScalarKwargs | None = None,
) -> None:
self._call = call
self._depth = depth
self._function_name = function_name
self._evaluate_output_names = evaluate_output_names
self._alias_output_names = alias_output_names
self._implementation = implementation
self._backend_version = backend_version
self._version = version
self._scalar_kwargs = scalar_kwargs or {}
self._metadata: ExprMetadata | None = None
def __narwhals_namespace__(self) -> PandasLikeNamespace:
from narwhals._pandas_like.namespace import PandasLikeNamespace
return PandasLikeNamespace(
self._implementation, self._backend_version, version=self._version
)
def __narwhals_expr__(self) -> None: ...
@classmethod
def from_column_names(
cls: type[Self],
evaluate_column_names: EvalNames[PandasLikeDataFrame],
/,
*,
context: _FullContext,
function_name: str = "",
) -> Self:
def func(df: PandasLikeDataFrame) -> list[PandasLikeSeries]:
try:
return [
PandasLikeSeries(
df._native_frame[column_name],
implementation=df._implementation,
backend_version=df._backend_version,
version=df._version,
)
for column_name in evaluate_column_names(df)
]
except KeyError as e:
if error := df._check_columns_exist(evaluate_column_names(df)):
raise error from e
raise
return cls(
func,
depth=0,
function_name=function_name,
evaluate_output_names=evaluate_column_names,
alias_output_names=None,
implementation=context._implementation,
backend_version=context._backend_version,
version=context._version,
)
@classmethod
def from_column_indices(cls, *column_indices: int, context: _FullContext) -> Self:
def func(df: PandasLikeDataFrame) -> list[PandasLikeSeries]:
native = df.native
return [
PandasLikeSeries.from_native(native.iloc[:, i], context=df)
for i in column_indices
]
return cls(
func,
depth=0,
function_name="nth",
evaluate_output_names=cls._eval_names_indices(column_indices),
alias_output_names=None,
implementation=context._implementation,
backend_version=context._backend_version,
version=context._version,
)
def ewm_mean(
self,
*,
com: float | None,
span: float | None,
half_life: float | None,
alpha: float | None,
adjust: bool,
min_samples: int,
ignore_nulls: bool,
) -> Self:
return self._reuse_series(
"ewm_mean",
com=com,
span=span,
half_life=half_life,
alpha=alpha,
adjust=adjust,
min_samples=min_samples,
ignore_nulls=ignore_nulls,
)
def cum_sum(self, *, reverse: bool) -> Self:
return self._reuse_series("cum_sum", scalar_kwargs={"reverse": reverse})
def shift(self, n: int) -> Self:
return self._reuse_series("shift", scalar_kwargs={"n": n})
def over( # noqa: C901, PLR0915
self, partition_by: Sequence[str], order_by: Sequence[str]
) -> Self:
if not partition_by:
# e.g. `nw.col('a').cum_sum().order_by(key)`
# We can always easily support this as it doesn't require grouping.
assert order_by # noqa: S101
def func(df: PandasLikeDataFrame) -> Sequence[PandasLikeSeries]:
token = generate_temporary_column_name(8, df.columns)
df = df.with_row_index(token).sort(
*order_by, descending=False, nulls_last=False
)
results = self(df.drop([token], strict=True))
sorting_indices = df.get_column(token)
for s in results:
s._scatter_in_place(sorting_indices, s)
return results
elif not self._is_elementary():
msg = (
"Only elementary expressions are supported for `.over` in pandas-like backends.\n\n"
"Please see: "
"https://narwhals-dev.github.io/narwhals/concepts/improve_group_by_operation/"
)
raise NotImplementedError(msg)
else:
function_name = PandasLikeGroupBy._leaf_name(self)
pandas_function_name = WINDOW_FUNCTIONS_TO_PANDAS_EQUIVALENT.get(
function_name, PandasLikeGroupBy._REMAP_AGGS.get(function_name)
)
if pandas_function_name is None:
msg = (
f"Unsupported function: {function_name} in `over` context.\n\n"
f"Supported functions are {', '.join(WINDOW_FUNCTIONS_TO_PANDAS_EQUIVALENT)}\n"
f"and {', '.join(PandasLikeGroupBy._REMAP_AGGS)}."
)
raise NotImplementedError(msg)
pandas_kwargs = window_kwargs_to_pandas_equivalent(
function_name, self._scalar_kwargs
)
def func(df: PandasLikeDataFrame) -> Sequence[PandasLikeSeries]: # noqa: C901, PLR0912
output_names, aliases = evaluate_output_names_and_aliases(self, df, [])
if function_name == "cum_count":
plx = self.__narwhals_namespace__()
df = df.with_columns(~plx.col(*output_names).is_null())
if function_name.startswith("cum_"):
assert "reverse" in self._scalar_kwargs # noqa: S101
reverse = self._scalar_kwargs["reverse"]
else:
assert "reverse" not in self._scalar_kwargs # noqa: S101
reverse = False
if order_by:
columns = list(set(partition_by).union(output_names).union(order_by))
token = generate_temporary_column_name(8, columns)
df = (
df.simple_select(*columns)
.with_row_index(token)
.sort(*order_by, descending=reverse, nulls_last=reverse)
)
sorting_indices = df.get_column(token)
elif reverse:
columns = list(set(partition_by).union(output_names))
df = df.simple_select(*columns)._gather_slice(slice(None, None, -1))
grouped = df._native_frame.groupby(partition_by)
if function_name.startswith("rolling"):
rolling = grouped[list(output_names)].rolling(**pandas_kwargs)
assert pandas_function_name is not None # help mypy # noqa: S101
if pandas_function_name in {"std", "var"}:
assert "ddof" in self._scalar_kwargs # noqa: S101
res_native = getattr(rolling, pandas_function_name)(
ddof=self._scalar_kwargs["ddof"]
)
else:
res_native = getattr(rolling, pandas_function_name)()
elif function_name == "fill_null":
assert "strategy" in self._scalar_kwargs # noqa: S101
assert "limit" in self._scalar_kwargs # noqa: S101
df_grouped = grouped[list(output_names)]
if self._scalar_kwargs["strategy"] == "forward":
res_native = df_grouped.ffill(limit=self._scalar_kwargs["limit"])
elif self._scalar_kwargs["strategy"] == "backward":
res_native = df_grouped.bfill(limit=self._scalar_kwargs["limit"])
else: # pragma: no cover
# This is deprecated in pandas. Indeed, `nw.col('a').fill_null(3).over('b')`
# does not seem very useful, and DuckDB doesn't support it either.
msg = "`fill_null` with `over` without `strategy` specified is not supported."
raise NotImplementedError(msg)
elif function_name == "len":
if len(output_names) != 1: # pragma: no cover
msg = "Safety check failed, please report a bug."
raise AssertionError(msg)
res_native = grouped.transform("size").to_frame(aliases[0])
else:
res_native = grouped[list(output_names)].transform(
pandas_function_name, **pandas_kwargs
)
result_frame = df._with_native(res_native).rename(
dict(zip(output_names, aliases))
)
results = [result_frame.get_column(name) for name in aliases]
if order_by:
for s in results:
s._scatter_in_place(sorting_indices, s)
return results
if reverse:
return [s._gather_slice(slice(None, None, -1)) for s in results]
return results
return self.__class__(
func,
depth=self._depth + 1,
function_name=self._function_name + "->over",
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
implementation=self._implementation,
backend_version=self._backend_version,
version=self._version,
)
def cum_count(self, *, reverse: bool) -> Self:
return self._reuse_series("cum_count", scalar_kwargs={"reverse": reverse})
def cum_min(self, *, reverse: bool) -> Self:
return self._reuse_series("cum_min", scalar_kwargs={"reverse": reverse})
def cum_max(self, *, reverse: bool) -> Self:
return self._reuse_series("cum_max", scalar_kwargs={"reverse": reverse})
def cum_prod(self, *, reverse: bool) -> Self:
return self._reuse_series("cum_prod", scalar_kwargs={"reverse": reverse})
def fill_null(
self,
value: Self | NonNestedLiteral,
strategy: FillNullStrategy | None,
limit: int | None,
) -> Self:
return self._reuse_series(
"fill_null", scalar_kwargs={"strategy": strategy, "limit": limit}, value=value
)
def rolling_sum(self, window_size: int, *, min_samples: int, center: bool) -> Self:
return self._reuse_series(
"rolling_sum",
scalar_kwargs={
"window_size": window_size,
"min_samples": min_samples,
"center": center,
},
)
def rolling_mean(self, window_size: int, *, min_samples: int, center: bool) -> Self:
return self._reuse_series(
"rolling_mean",
scalar_kwargs={
"window_size": window_size,
"min_samples": min_samples,
"center": center,
},
)
def rolling_std(
self, window_size: int, *, min_samples: int, center: bool, ddof: int
) -> Self:
return self._reuse_series(
"rolling_std",
scalar_kwargs={
"window_size": window_size,
"min_samples": min_samples,
"center": center,
"ddof": ddof,
},
)
def rolling_var(
self, window_size: int, *, min_samples: int, center: bool, ddof: int
) -> Self:
return self._reuse_series(
"rolling_var",
scalar_kwargs={
"window_size": window_size,
"min_samples": min_samples,
"center": center,
"ddof": ddof,
},
)
def rank(self, method: RankMethod, *, descending: bool) -> Self:
return self._reuse_series(
"rank", scalar_kwargs={"method": method, "descending": descending}
)
def log(self, base: float) -> Self:
return self._reuse_series("log", base=base)
def exp(self) -> Self:
return self._reuse_series("exp")
|