1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
from __future__ import annotations
import collections
import warnings
from typing import TYPE_CHECKING, Any, ClassVar, Iterator, Mapping, Sequence
from narwhals._compliant import EagerGroupBy
from narwhals._expression_parsing import evaluate_output_names_and_aliases
from narwhals._pandas_like.utils import select_columns_by_name
from narwhals._utils import find_stacklevel
if TYPE_CHECKING:
from narwhals._compliant.group_by import NarwhalsAggregation
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
from narwhals._pandas_like.expr import PandasLikeExpr
class PandasLikeGroupBy(EagerGroupBy["PandasLikeDataFrame", "PandasLikeExpr", str]):
_REMAP_AGGS: ClassVar[Mapping[NarwhalsAggregation, Any]] = {
"sum": "sum",
"mean": "mean",
"median": "median",
"max": "max",
"min": "min",
"std": "std",
"var": "var",
"len": "size",
"n_unique": "nunique",
"count": "count",
}
def __init__(
self,
df: PandasLikeDataFrame,
keys: Sequence[PandasLikeExpr] | Sequence[str],
/,
*,
drop_null_keys: bool,
) -> None:
self._df = df
self._drop_null_keys = drop_null_keys
self._compliant_frame, self._keys, self._output_key_names = self._parse_keys(
df, keys=keys
)
# Drop index to avoid potential collisions:
# https://github.com/narwhals-dev/narwhals/issues/1907.
if set(self.compliant.native.index.names).intersection(self.compliant.columns):
native_frame = self.compliant.native.reset_index(drop=True)
else:
native_frame = self.compliant.native
if (
self.compliant._implementation.is_pandas()
and self.compliant._backend_version < (1, 1)
): # pragma: no cover
if (
not drop_null_keys
and self.compliant.simple_select(*self._keys).native.isna().any().any()
):
msg = "Grouping by null values is not supported in pandas < 1.1.0"
raise NotImplementedError(msg)
self._grouped = native_frame.groupby(
list(self._keys), sort=False, as_index=True, observed=True
)
else:
self._grouped = native_frame.groupby(
list(self._keys),
sort=False,
as_index=True,
dropna=drop_null_keys,
observed=True,
)
def agg(self, *exprs: PandasLikeExpr) -> PandasLikeDataFrame: # noqa: C901, PLR0912, PLR0914, PLR0915
implementation = self.compliant._implementation
backend_version = self.compliant._backend_version
new_names: list[str] = self._keys.copy()
all_aggs_are_simple = True
exclude = (*self._keys, *self._output_key_names)
for expr in exprs:
_, aliases = evaluate_output_names_and_aliases(expr, self.compliant, exclude)
new_names.extend(aliases)
if not self._is_simple(expr):
all_aggs_are_simple = False
# dict of {output_name: root_name} that we count n_unique on
# We need to do this separately from the rest so that we
# can pass the `dropna` kwargs.
nunique_aggs: dict[str, str] = {}
simple_aggs: dict[str, list[str]] = collections.defaultdict(list)
simple_aggs_functions: set[str] = set()
# ddof to (output_names, aliases) mapping
std_aggs: dict[int, tuple[list[str], list[str]]] = collections.defaultdict(
lambda: ([], [])
)
var_aggs: dict[int, tuple[list[str], list[str]]] = collections.defaultdict(
lambda: ([], [])
)
expected_old_names: list[str] = []
simple_agg_new_names: list[str] = []
if all_aggs_are_simple: # noqa: PLR1702
for expr in exprs:
output_names, aliases = evaluate_output_names_and_aliases(
expr, self.compliant, exclude
)
if expr._depth == 0:
# e.g. `agg(nw.len())`
function_name = self._remap_expr_name(expr._function_name)
simple_aggs_functions.add(function_name)
for alias in aliases:
expected_old_names.append(f"{self._keys[0]}_{function_name}")
simple_aggs[self._keys[0]].append(function_name)
simple_agg_new_names.append(alias)
continue
# e.g. `agg(nw.mean('a'))`
function_name = self._remap_expr_name(self._leaf_name(expr))
is_n_unique = function_name == "nunique"
is_std = function_name == "std"
is_var = function_name == "var"
for output_name, alias in zip(output_names, aliases):
if is_n_unique:
nunique_aggs[alias] = output_name
elif is_std and (ddof := expr._scalar_kwargs["ddof"]) != 1: # pyright: ignore[reportTypedDictNotRequiredAccess]
std_aggs[ddof][0].append(output_name)
std_aggs[ddof][1].append(alias)
elif is_var and (ddof := expr._scalar_kwargs["ddof"]) != 1: # pyright: ignore[reportTypedDictNotRequiredAccess]
var_aggs[ddof][0].append(output_name)
var_aggs[ddof][1].append(alias)
else:
expected_old_names.append(f"{output_name}_{function_name}")
simple_aggs[output_name].append(function_name)
simple_agg_new_names.append(alias)
simple_aggs_functions.add(function_name)
result_aggs = []
if simple_aggs:
# Fast path for single aggregation such as `df.groupby(...).mean()`
if (
len(simple_aggs_functions) == 1
and (agg_method := simple_aggs_functions.pop()) != "size"
and len(simple_aggs) > 1
):
result_simple_aggs = getattr(
self._grouped[list(simple_aggs.keys())], agg_method
)()
result_simple_aggs.columns = [
f"{a}_{agg_method}" for a in result_simple_aggs.columns
]
else:
result_simple_aggs = self._grouped.agg(simple_aggs)
result_simple_aggs.columns = [
f"{a}_{b}" for a, b in result_simple_aggs.columns
]
if not (
set(result_simple_aggs.columns) == set(expected_old_names)
and len(result_simple_aggs.columns) == len(expected_old_names)
): # pragma: no cover
msg = (
f"Safety assertion failed, expected {expected_old_names} "
f"got {result_simple_aggs.columns}, "
"please report a bug at https://github.com/narwhals-dev/narwhals/issues"
)
raise AssertionError(msg)
# Rename columns, being very careful
expected_old_names_indices: dict[str, list[int]] = (
collections.defaultdict(list)
)
for idx, item in enumerate(expected_old_names):
expected_old_names_indices[item].append(idx)
index_map: list[int] = [
expected_old_names_indices[item].pop(0)
for item in result_simple_aggs.columns
]
result_simple_aggs.columns = [simple_agg_new_names[i] for i in index_map]
result_aggs.append(result_simple_aggs)
if nunique_aggs:
result_nunique_aggs = self._grouped[list(nunique_aggs.values())].nunique(
dropna=False
)
result_nunique_aggs.columns = list(nunique_aggs.keys())
result_aggs.append(result_nunique_aggs)
if std_aggs:
for ddof, (std_output_names, std_aliases) in std_aggs.items():
_aggregation = self._grouped[std_output_names].std(ddof=ddof)
# `_aggregation` is a new object so it's OK to operate inplace.
_aggregation.columns = std_aliases
result_aggs.append(_aggregation)
if var_aggs:
for ddof, (var_output_names, var_aliases) in var_aggs.items():
_aggregation = self._grouped[var_output_names].var(ddof=ddof)
# `_aggregation` is a new object so it's OK to operate inplace.
_aggregation.columns = var_aliases
result_aggs.append(_aggregation)
if result_aggs:
output_names_counter = collections.Counter(
c for frame in result_aggs for c in frame
)
if any(v > 1 for v in output_names_counter.values()):
msg = ""
for key, value in output_names_counter.items():
if value > 1:
msg += f"\n- '{key}' {value} times"
else: # pragma: no cover
pass
msg = f"Expected unique output names, got:{msg}"
raise ValueError(msg)
namespace = self.compliant.__narwhals_namespace__()
result = namespace._concat_horizontal(result_aggs)
else:
# No aggregation provided
result = self.compliant.__native_namespace__().DataFrame(
list(self._grouped.groups.keys()), columns=self._keys
)
# Keep inplace=True to avoid making a redundant copy.
# This may need updating, depending on https://github.com/pandas-dev/pandas/pull/51466/files
result.reset_index(inplace=True) # noqa: PD002
return self.compliant._with_native(
select_columns_by_name(result, new_names, backend_version, implementation)
).rename(dict(zip(self._keys, self._output_key_names)))
if self.compliant.native.empty:
# Don't even attempt this, it's way too inconsistent across pandas versions.
msg = (
"No results for group-by aggregation.\n\n"
"Hint: you were probably trying to apply a non-elementary aggregation with a "
"pandas-like API.\n"
"Please rewrite your query such that group-by aggregations "
"are elementary. For example, instead of:\n\n"
" df.group_by('a').agg(nw.col('b').round(2).mean())\n\n"
"use:\n\n"
" df.with_columns(nw.col('b').round(2)).group_by('a').agg(nw.col('b').mean())\n\n"
)
raise ValueError(msg)
warnings.warn(
"Found complex group-by expression, which can't be expressed efficiently with the "
"pandas API. If you can, please rewrite your query such that group-by aggregations "
"are simple (e.g. mean, std, min, max, ...). \n\n"
"Please see: "
"https://narwhals-dev.github.io/narwhals/concepts/improve_group_by_operation/",
UserWarning,
stacklevel=find_stacklevel(),
)
def func(df: Any) -> Any:
out_group = []
out_names = []
for expr in exprs:
results_keys = expr(self.compliant._with_native(df))
for result_keys in results_keys:
out_group.append(result_keys.native.iloc[0])
out_names.append(result_keys.name)
ns = self.compliant.__narwhals_namespace__()
return ns._series.from_iterable(out_group, index=out_names, context=ns).native
if implementation.is_pandas() and backend_version >= (2, 2):
result_complex = self._grouped.apply(func, include_groups=False)
else: # pragma: no cover
result_complex = self._grouped.apply(func)
# Keep inplace=True to avoid making a redundant copy.
# This may need updating, depending on https://github.com/pandas-dev/pandas/pull/51466/files
result_complex.reset_index(inplace=True) # noqa: PD002
return self.compliant._with_native(
select_columns_by_name(
result_complex, new_names, backend_version, implementation
)
).rename(dict(zip(self._keys, self._output_key_names)))
def __iter__(self) -> Iterator[tuple[Any, PandasLikeDataFrame]]:
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message=".*a length 1 tuple will be returned",
category=FutureWarning,
)
for key, group in self._grouped:
yield (
key,
self.compliant._with_native(group).simple_select(*self._df.columns),
)
|