aboutsummaryrefslogtreecommitdiff
path: root/venv/lib/python3.8/site-packages/narwhals/_spark_like/dataframe.py
blob: c4ea73fcd44bc213a81a728378efdd7cf95f72e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
from __future__ import annotations

import warnings
from functools import reduce
from operator import and_
from typing import TYPE_CHECKING, Any, Iterator, Mapping, Sequence

from narwhals._namespace import is_native_spark_like
from narwhals._spark_like.utils import (
    evaluate_exprs,
    import_functions,
    import_native_dtypes,
    import_window,
    native_to_narwhals_dtype,
)
from narwhals._utils import (
    Implementation,
    find_stacklevel,
    generate_temporary_column_name,
    not_implemented,
    parse_columns_to_drop,
    parse_version,
    validate_backend_version,
)
from narwhals.exceptions import InvalidOperationError
from narwhals.typing import CompliantLazyFrame

if TYPE_CHECKING:
    from types import ModuleType

    import pyarrow as pa
    from sqlframe.base.column import Column
    from sqlframe.base.dataframe import BaseDataFrame
    from sqlframe.base.window import Window
    from typing_extensions import Self, TypeAlias, TypeIs

    from narwhals._compliant.typing import CompliantDataFrameAny
    from narwhals._spark_like.expr import SparkLikeExpr
    from narwhals._spark_like.group_by import SparkLikeLazyGroupBy
    from narwhals._spark_like.namespace import SparkLikeNamespace
    from narwhals._utils import Version, _FullContext
    from narwhals.dataframe import LazyFrame
    from narwhals.dtypes import DType
    from narwhals.typing import JoinStrategy, LazyUniqueKeepStrategy

    SQLFrameDataFrame = BaseDataFrame[Any, Any, Any, Any, Any]

Incomplete: TypeAlias = Any  # pragma: no cover
"""Marker for working code that fails type checking."""


class SparkLikeLazyFrame(
    CompliantLazyFrame[
        "SparkLikeExpr", "SQLFrameDataFrame", "LazyFrame[SQLFrameDataFrame]"
    ]
):
    def __init__(
        self,
        native_dataframe: SQLFrameDataFrame,
        *,
        backend_version: tuple[int, ...],
        version: Version,
        implementation: Implementation,
    ) -> None:
        self._native_frame: SQLFrameDataFrame = native_dataframe
        self._backend_version = backend_version
        self._implementation = implementation
        self._version = version
        self._cached_schema: dict[str, DType] | None = None
        self._cached_columns: list[str] | None = None
        validate_backend_version(self._implementation, self._backend_version)

    @property
    def _F(self):  # type: ignore[no-untyped-def] # noqa: ANN202, N802
        if TYPE_CHECKING:
            from sqlframe.base import functions

            return functions
        else:
            return import_functions(self._implementation)

    @property
    def _native_dtypes(self):  # type: ignore[no-untyped-def] # noqa: ANN202
        if TYPE_CHECKING:
            from sqlframe.base import types

            return types
        else:
            return import_native_dtypes(self._implementation)

    @property
    def _Window(self) -> type[Window]:  # noqa: N802
        if TYPE_CHECKING:
            from sqlframe.base.window import Window

            return Window
        else:
            return import_window(self._implementation)

    @staticmethod
    def _is_native(obj: SQLFrameDataFrame | Any) -> TypeIs[SQLFrameDataFrame]:
        return is_native_spark_like(obj)

    @classmethod
    def from_native(cls, data: SQLFrameDataFrame, /, *, context: _FullContext) -> Self:
        return cls(
            data,
            backend_version=context._backend_version,
            version=context._version,
            implementation=context._implementation,
        )

    def to_narwhals(self) -> LazyFrame[SQLFrameDataFrame]:
        return self._version.lazyframe(self, level="lazy")

    def __native_namespace__(self) -> ModuleType:  # pragma: no cover
        return self._implementation.to_native_namespace()

    def __narwhals_namespace__(self) -> SparkLikeNamespace:
        from narwhals._spark_like.namespace import SparkLikeNamespace

        return SparkLikeNamespace(
            backend_version=self._backend_version,
            version=self._version,
            implementation=self._implementation,
        )

    def __narwhals_lazyframe__(self) -> Self:
        return self

    def _with_version(self, version: Version) -> Self:
        return self.__class__(
            self.native,
            backend_version=self._backend_version,
            version=version,
            implementation=self._implementation,
        )

    def _with_native(self, df: SQLFrameDataFrame) -> Self:
        return self.__class__(
            df,
            backend_version=self._backend_version,
            version=self._version,
            implementation=self._implementation,
        )

    def _to_arrow_schema(self) -> pa.Schema:  # pragma: no cover
        import pyarrow as pa  # ignore-banned-import

        from narwhals._arrow.utils import narwhals_to_native_dtype

        schema: list[tuple[str, pa.DataType]] = []
        nw_schema = self.collect_schema()
        native_schema = self.native.schema
        for key, value in nw_schema.items():
            try:
                native_dtype = narwhals_to_native_dtype(value, self._version)
            except Exception as exc:  # noqa: BLE001,PERF203
                native_spark_dtype = native_schema[key].dataType  # type: ignore[index]
                # If we can't convert the type, just set it to `pa.null`, and warn.
                # Avoid the warning if we're starting from PySpark's void type.
                # We can avoid the check when we introduce `nw.Null` dtype.
                null_type = self._native_dtypes.NullType  # pyright: ignore[reportAttributeAccessIssue]
                if not isinstance(native_spark_dtype, null_type):
                    warnings.warn(
                        f"Could not convert dtype {native_spark_dtype} to PyArrow dtype, {exc!r}",
                        stacklevel=find_stacklevel(),
                    )
                schema.append((key, pa.null()))
            else:
                schema.append((key, native_dtype))
        return pa.schema(schema)

    def _collect_to_arrow(self) -> pa.Table:
        if self._implementation.is_pyspark() and self._backend_version < (4,):
            import pyarrow as pa  # ignore-banned-import

            try:
                return pa.Table.from_batches(self.native._collect_as_arrow())
            except ValueError as exc:
                if "at least one RecordBatch" in str(exc):
                    # Empty dataframe

                    data: dict[str, list[Any]] = {k: [] for k in self.columns}
                    pa_schema = self._to_arrow_schema()
                    return pa.Table.from_pydict(data, schema=pa_schema)
                else:  # pragma: no cover
                    raise
        elif self._implementation.is_pyspark_connect() and self._backend_version < (4,):
            import pyarrow as pa  # ignore-banned-import

            pa_schema = self._to_arrow_schema()
            return pa.Table.from_pandas(self.native.toPandas(), schema=pa_schema)
        else:
            return self.native.toArrow()

    def _iter_columns(self) -> Iterator[Column]:
        for col in self.columns:
            yield self._F.col(col)

    @property
    def columns(self) -> list[str]:
        if self._cached_columns is None:
            self._cached_columns = (
                list(self.schema)
                if self._cached_schema is not None
                else self.native.columns
            )
        return self._cached_columns

    def collect(
        self, backend: ModuleType | Implementation | str | None, **kwargs: Any
    ) -> CompliantDataFrameAny:
        if backend is Implementation.PANDAS:
            import pandas as pd  # ignore-banned-import

            from narwhals._pandas_like.dataframe import PandasLikeDataFrame

            return PandasLikeDataFrame(
                self.native.toPandas(),
                implementation=Implementation.PANDAS,
                backend_version=parse_version(pd),
                version=self._version,
                validate_column_names=True,
            )

        elif backend is None or backend is Implementation.PYARROW:
            import pyarrow as pa  # ignore-banned-import

            from narwhals._arrow.dataframe import ArrowDataFrame

            return ArrowDataFrame(
                self._collect_to_arrow(),
                backend_version=parse_version(pa),
                version=self._version,
                validate_column_names=True,
            )

        elif backend is Implementation.POLARS:
            import polars as pl  # ignore-banned-import
            import pyarrow as pa  # ignore-banned-import

            from narwhals._polars.dataframe import PolarsDataFrame

            return PolarsDataFrame(
                pl.from_arrow(self._collect_to_arrow()),  # type: ignore[arg-type]
                backend_version=parse_version(pl),
                version=self._version,
            )

        msg = f"Unsupported `backend` value: {backend}"  # pragma: no cover
        raise ValueError(msg)  # pragma: no cover

    def simple_select(self, *column_names: str) -> Self:
        return self._with_native(self.native.select(*column_names))

    def aggregate(self, *exprs: SparkLikeExpr) -> Self:
        new_columns = evaluate_exprs(self, *exprs)

        new_columns_list = [col.alias(col_name) for col_name, col in new_columns]
        return self._with_native(self.native.agg(*new_columns_list))

    def select(self, *exprs: SparkLikeExpr) -> Self:
        new_columns = evaluate_exprs(self, *exprs)
        new_columns_list = [col.alias(col_name) for (col_name, col) in new_columns]
        return self._with_native(self.native.select(*new_columns_list))

    def with_columns(self, *exprs: SparkLikeExpr) -> Self:
        new_columns = evaluate_exprs(self, *exprs)
        return self._with_native(self.native.withColumns(dict(new_columns)))

    def filter(self, predicate: SparkLikeExpr) -> Self:
        # `[0]` is safe as the predicate's expression only returns a single column
        condition = predicate._call(self)[0]
        spark_df = self.native.where(condition)
        return self._with_native(spark_df)

    @property
    def schema(self) -> dict[str, DType]:
        if self._cached_schema is None:
            self._cached_schema = {
                field.name: native_to_narwhals_dtype(
                    field.dataType,
                    self._version,
                    self._native_dtypes,
                    self.native.sparkSession,
                )
                for field in self.native.schema
            }
        return self._cached_schema

    def collect_schema(self) -> dict[str, DType]:
        return self.schema

    def drop(self, columns: Sequence[str], *, strict: bool) -> Self:
        columns_to_drop = parse_columns_to_drop(self, columns, strict=strict)
        return self._with_native(self.native.drop(*columns_to_drop))

    def head(self, n: int) -> Self:
        return self._with_native(self.native.limit(n))

    def group_by(
        self, keys: Sequence[str] | Sequence[SparkLikeExpr], *, drop_null_keys: bool
    ) -> SparkLikeLazyGroupBy:
        from narwhals._spark_like.group_by import SparkLikeLazyGroupBy

        return SparkLikeLazyGroupBy(self, keys, drop_null_keys=drop_null_keys)

    def sort(self, *by: str, descending: bool | Sequence[bool], nulls_last: bool) -> Self:
        if isinstance(descending, bool):
            descending = [descending] * len(by)

        if nulls_last:
            sort_funcs = (
                self._F.desc_nulls_last if d else self._F.asc_nulls_last
                for d in descending
            )
        else:
            sort_funcs = (
                self._F.desc_nulls_first if d else self._F.asc_nulls_first
                for d in descending
            )

        sort_cols = [sort_f(col) for col, sort_f in zip(by, sort_funcs)]
        return self._with_native(self.native.sort(*sort_cols))

    def drop_nulls(self, subset: Sequence[str] | None) -> Self:
        subset = list(subset) if subset else None
        return self._with_native(self.native.dropna(subset=subset))

    def rename(self, mapping: Mapping[str, str]) -> Self:
        rename_mapping = {
            colname: mapping.get(colname, colname) for colname in self.columns
        }
        return self._with_native(
            self.native.select(
                [self._F.col(old).alias(new) for old, new in rename_mapping.items()]
            )
        )

    def unique(
        self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy
    ) -> Self:
        if subset and (error := self._check_columns_exist(subset)):
            raise error
        subset = list(subset) if subset else None
        if keep == "none":
            tmp = generate_temporary_column_name(8, self.columns)
            window = self._Window.partitionBy(subset or self.columns)
            df = (
                self.native.withColumn(tmp, self._F.count("*").over(window))
                .filter(self._F.col(tmp) == self._F.lit(1))
                .drop(self._F.col(tmp))
            )
            return self._with_native(df)
        return self._with_native(self.native.dropDuplicates(subset=subset))

    def join(
        self,
        other: Self,
        how: JoinStrategy,
        left_on: Sequence[str] | None,
        right_on: Sequence[str] | None,
        suffix: str,
    ) -> Self:
        left_columns = self.columns
        right_columns = other.columns

        right_on_: list[str] = list(right_on) if right_on is not None else []
        left_on_: list[str] = list(left_on) if left_on is not None else []

        # create a mapping for columns on other
        # `right_on` columns will be renamed as `left_on`
        # the remaining columns will be either added the suffix or left unchanged.
        right_cols_to_rename = (
            [c for c in right_columns if c not in right_on_]
            if how != "full"
            else right_columns
        )

        rename_mapping = {
            **dict(zip(right_on_, left_on_)),
            **{
                colname: f"{colname}{suffix}" if colname in left_columns else colname
                for colname in right_cols_to_rename
            },
        }
        other_native = other.native.select(
            [self._F.col(old).alias(new) for old, new in rename_mapping.items()]
        )

        # If how in {"semi", "anti"}, then resulting columns are same as left columns
        # Otherwise, we add the right columns with the new mapping, while keeping the
        # original order of right_columns.
        col_order = left_columns.copy()

        if how in {"inner", "left", "cross"}:
            col_order.extend(
                rename_mapping[colname]
                for colname in right_columns
                if colname not in right_on_
            )
        elif how == "full":
            col_order.extend(rename_mapping.values())

        right_on_remapped = [rename_mapping[c] for c in right_on_]
        on_ = (
            reduce(
                and_,
                (
                    getattr(self.native, left_key) == getattr(other_native, right_key)
                    for left_key, right_key in zip(left_on_, right_on_remapped)
                ),
            )
            if how == "full"
            else None
            if how == "cross"
            else left_on_
        )
        how_native = "full_outer" if how == "full" else how
        return self._with_native(
            self.native.join(other_native, on=on_, how=how_native).select(col_order)
        )

    def explode(self, columns: Sequence[str]) -> Self:
        dtypes = self._version.dtypes

        schema = self.collect_schema()
        for col_to_explode in columns:
            dtype = schema[col_to_explode]

            if dtype != dtypes.List:
                msg = (
                    f"`explode` operation not supported for dtype `{dtype}`, "
                    "expected List type"
                )
                raise InvalidOperationError(msg)

        column_names = self.columns

        if len(columns) != 1:
            msg = (
                "Exploding on multiple columns is not supported with SparkLike backend since "
                "we cannot guarantee that the exploded columns have matching element counts."
            )
            raise NotImplementedError(msg)

        if self._implementation.is_pyspark() or self._implementation.is_pyspark_connect():
            return self._with_native(
                self.native.select(
                    *[
                        self._F.col(col_name).alias(col_name)
                        if col_name != columns[0]
                        else self._F.explode_outer(col_name).alias(col_name)
                        for col_name in column_names
                    ]
                )
            )
        elif self._implementation.is_sqlframe():
            # Not every sqlframe dialect supports `explode_outer` function
            # (see https://github.com/eakmanrq/sqlframe/blob/3cb899c515b101ff4c197d84b34fae490d0ed257/sqlframe/base/functions.py#L2288-L2289)
            # therefore we simply explode the array column which will ignore nulls and
            # zero sized arrays, and append these specific condition with nulls (to
            # match polars behavior).

            def null_condition(col_name: str) -> Column:
                return self._F.isnull(col_name) | (self._F.array_size(col_name) == 0)

            return self._with_native(
                self.native.select(
                    *[
                        self._F.col(col_name).alias(col_name)
                        if col_name != columns[0]
                        else self._F.explode(col_name).alias(col_name)
                        for col_name in column_names
                    ]
                ).union(
                    self.native.filter(null_condition(columns[0])).select(
                        *[
                            self._F.col(col_name).alias(col_name)
                            if col_name != columns[0]
                            else self._F.lit(None).alias(col_name)
                            for col_name in column_names
                        ]
                    )
                )
            )
        else:  # pragma: no cover
            msg = "Unreachable code, please report an issue at https://github.com/narwhals-dev/narwhals/issues"
            raise AssertionError(msg)

    def unpivot(
        self,
        on: Sequence[str] | None,
        index: Sequence[str] | None,
        variable_name: str,
        value_name: str,
    ) -> Self:
        if self._implementation.is_sqlframe():
            if variable_name == "":
                msg = "`variable_name` cannot be empty string for sqlframe backend."
                raise NotImplementedError(msg)

            if value_name == "":
                msg = "`value_name` cannot be empty string for sqlframe backend."
                raise NotImplementedError(msg)
        else:  # pragma: no cover
            pass

        ids = tuple(index) if index else ()
        values = (
            tuple(set(self.columns).difference(set(ids))) if on is None else tuple(on)
        )
        unpivoted_native_frame = self.native.unpivot(
            ids=ids,
            values=values,
            variableColumnName=variable_name,
            valueColumnName=value_name,
        )
        if index is None:
            unpivoted_native_frame = unpivoted_native_frame.drop(*ids)
        return self._with_native(unpivoted_native_frame)

    gather_every = not_implemented.deprecated(
        "`LazyFrame.gather_every` is deprecated and will be removed in a future version."
    )
    join_asof = not_implemented()
    tail = not_implemented.deprecated(
        "`LazyFrame.tail` is deprecated and will be removed in a future version."
    )
    with_row_index = not_implemented()