aboutsummaryrefslogtreecommitdiff
path: root/venv/lib/python3.8/site-packages/plotly/express/imshow_utils.py
blob: 7f110ede4d062be9b8d9133022bd67f3fe1a4118 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""Vendored code from scikit-image in order to limit the number of dependencies
Extracted from scikit-image/skimage/exposure/exposure.py
"""

import numpy as np

from warnings import warn

_integer_types = (
    np.byte,
    np.ubyte,  # 8 bits
    np.short,
    np.ushort,  # 16 bits
    np.intc,
    np.uintc,  # 16 or 32 or 64 bits
    np.int_,
    np.uint,  # 32 or 64 bits
    np.longlong,
    np.ulonglong,
)  # 64 bits
_integer_ranges = {t: (np.iinfo(t).min, np.iinfo(t).max) for t in _integer_types}
dtype_range = {
    np.bool_: (False, True),
    np.float16: (-1, 1),
    np.float32: (-1, 1),
    np.float64: (-1, 1),
}
dtype_range.update(_integer_ranges)


DTYPE_RANGE = dtype_range.copy()
DTYPE_RANGE.update((d.__name__, limits) for d, limits in dtype_range.items())
DTYPE_RANGE.update(
    {
        "uint10": (0, 2**10 - 1),
        "uint12": (0, 2**12 - 1),
        "uint14": (0, 2**14 - 1),
        "bool": dtype_range[np.bool_],
        "float": dtype_range[np.float64],
    }
)


def intensity_range(image, range_values="image", clip_negative=False):
    """Return image intensity range (min, max) based on desired value type.

    Parameters
    ----------
    image : array
        Input image.
    range_values : str or 2-tuple, optional
        The image intensity range is configured by this parameter.
        The possible values for this parameter are enumerated below.

        'image'
            Return image min/max as the range.
        'dtype'
            Return min/max of the image's dtype as the range.
        dtype-name
            Return intensity range based on desired `dtype`. Must be valid key
            in `DTYPE_RANGE`. Note: `image` is ignored for this range type.
        2-tuple
            Return `range_values` as min/max intensities. Note that there's no
            reason to use this function if you just want to specify the
            intensity range explicitly. This option is included for functions
            that use `intensity_range` to support all desired range types.

    clip_negative : bool, optional
        If True, clip the negative range (i.e. return 0 for min intensity)
        even if the image dtype allows negative values.
    """
    if range_values == "dtype":
        range_values = image.dtype.type

    if range_values == "image":
        i_min = np.min(image)
        i_max = np.max(image)
    elif range_values in DTYPE_RANGE:
        i_min, i_max = DTYPE_RANGE[range_values]
        if clip_negative:
            i_min = 0
    else:
        i_min, i_max = range_values
    return i_min, i_max


def _output_dtype(dtype_or_range):
    """Determine the output dtype for rescale_intensity.

    The dtype is determined according to the following rules:
    - if ``dtype_or_range`` is a dtype, that is the output dtype.
    - if ``dtype_or_range`` is a dtype string, that is the dtype used, unless
      it is not a NumPy data type (e.g. 'uint12' for 12-bit unsigned integers),
      in which case the data type that can contain it will be used
      (e.g. uint16 in this case).
    - if ``dtype_or_range`` is a pair of values, the output data type will be
      float.

    Parameters
    ----------
    dtype_or_range : type, string, or 2-tuple of int/float
        The desired range for the output, expressed as either a NumPy dtype or
        as a (min, max) pair of numbers.

    Returns
    -------
    out_dtype : type
        The data type appropriate for the desired output.
    """
    if type(dtype_or_range) in [list, tuple, np.ndarray]:
        # pair of values: always return float.
        return np.float_
    if isinstance(dtype_or_range, type):
        # already a type: return it
        return dtype_or_range
    if dtype_or_range in DTYPE_RANGE:
        # string key in DTYPE_RANGE dictionary
        try:
            # if it's a canonical numpy dtype, convert
            return np.dtype(dtype_or_range).type
        except TypeError:  # uint10, uint12, uint14
            # otherwise, return uint16
            return np.uint16
    else:
        raise ValueError(
            "Incorrect value for out_range, should be a valid image data "
            "type or a pair of values, got %s." % str(dtype_or_range)
        )


def rescale_intensity(image, in_range="image", out_range="dtype"):
    """Return image after stretching or shrinking its intensity levels.

    The desired intensity range of the input and output, `in_range` and
    `out_range` respectively, are used to stretch or shrink the intensity range
    of the input image. See examples below.

    Parameters
    ----------
    image : array
        Image array.
    in_range, out_range : str or 2-tuple, optional
        Min and max intensity values of input and output image.
        The possible values for this parameter are enumerated below.

        'image'
            Use image min/max as the intensity range.
        'dtype'
            Use min/max of the image's dtype as the intensity range.
        dtype-name
            Use intensity range based on desired `dtype`. Must be valid key
            in `DTYPE_RANGE`.
        2-tuple
            Use `range_values` as explicit min/max intensities.

    Returns
    -------
    out : array
        Image array after rescaling its intensity. This image is the same dtype
        as the input image.

    Notes
    -----
    .. versionchanged:: 0.17
        The dtype of the output array has changed to match the output dtype, or
        float if the output range is specified by a pair of floats.

    See Also
    --------
    equalize_hist

    Examples
    --------
    By default, the min/max intensities of the input image are stretched to
    the limits allowed by the image's dtype, since `in_range` defaults to
    'image' and `out_range` defaults to 'dtype':

    >>> image = np.array([51, 102, 153], dtype=np.uint8)
    >>> rescale_intensity(image)
    array([  0, 127, 255], dtype=uint8)

    It's easy to accidentally convert an image dtype from uint8 to float:

    >>> 1.0 * image
    array([ 51., 102., 153.])

    Use `rescale_intensity` to rescale to the proper range for float dtypes:

    >>> image_float = 1.0 * image
    >>> rescale_intensity(image_float)
    array([0. , 0.5, 1. ])

    To maintain the low contrast of the original, use the `in_range` parameter:

    >>> rescale_intensity(image_float, in_range=(0, 255))
    array([0.2, 0.4, 0.6])

    If the min/max value of `in_range` is more/less than the min/max image
    intensity, then the intensity levels are clipped:

    >>> rescale_intensity(image_float, in_range=(0, 102))
    array([0.5, 1. , 1. ])

    If you have an image with signed integers but want to rescale the image to
    just the positive range, use the `out_range` parameter. In that case, the
    output dtype will be float:

    >>> image = np.array([-10, 0, 10], dtype=np.int8)
    >>> rescale_intensity(image, out_range=(0, 127))
    array([  0. ,  63.5, 127. ])

    To get the desired range with a specific dtype, use ``.astype()``:

    >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int8)
    array([  0,  63, 127], dtype=int8)

    If the input image is constant, the output will be clipped directly to the
    output range:
    >>> image = np.array([130, 130, 130], dtype=np.int32)
    >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int32)
    array([127, 127, 127], dtype=int32)
    """
    if out_range in ["dtype", "image"]:
        out_dtype = _output_dtype(image.dtype.type)
    else:
        out_dtype = _output_dtype(out_range)

    imin, imax = map(float, intensity_range(image, in_range))
    omin, omax = map(
        float, intensity_range(image, out_range, clip_negative=(imin >= 0))
    )

    if np.any(np.isnan([imin, imax, omin, omax])):
        warn(
            "One or more intensity levels are NaN. Rescaling will broadcast "
            "NaN to the full image. Provide intensity levels yourself to "
            "avoid this. E.g. with np.nanmin(image), np.nanmax(image).",
            stacklevel=2,
        )

    image = np.clip(image, imin, imax)

    if imin != imax:
        image = (image - imin) / (imax - imin)
        return np.asarray(image * (omax - omin) + omin, dtype=out_dtype)
    else:
        return np.clip(image, omin, omax).astype(out_dtype)