diff options
author | sotech117 <michael_foiani@brown.edu> | 2024-04-09 03:14:17 -0400 |
---|---|---|
committer | sotech117 <michael_foiani@brown.edu> | 2024-04-09 03:14:17 -0400 |
commit | 7a8d0d8bc2572707c9d35006f30ea835c86954b0 (patch) | |
tree | dedb9a65c1698202ad485378b4186b667008abe5 /Eigen/src/Cholesky | |
parent | 818324678bd5dca790c57048e5012d2937a4b5e5 (diff) |
first draft to generate waves
Diffstat (limited to 'Eigen/src/Cholesky')
-rw-r--r-- | Eigen/src/Cholesky/LDLT.h | 688 | ||||
-rw-r--r-- | Eigen/src/Cholesky/LLT.h | 558 | ||||
-rw-r--r-- | Eigen/src/Cholesky/LLT_LAPACKE.h | 99 |
3 files changed, 1345 insertions, 0 deletions
diff --git a/Eigen/src/Cholesky/LDLT.h b/Eigen/src/Cholesky/LDLT.h new file mode 100644 index 0000000..1013ca0 --- /dev/null +++ b/Eigen/src/Cholesky/LDLT.h @@ -0,0 +1,688 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2009 Keir Mierle <mierle@gmail.com> +// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> +// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LDLT_H +#define EIGEN_LDLT_H + +namespace Eigen { + +namespace internal { + template<typename _MatrixType, int _UpLo> struct traits<LDLT<_MatrixType, _UpLo> > + : traits<_MatrixType> + { + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef int StorageIndex; + enum { Flags = 0 }; + }; + + template<typename MatrixType, int UpLo> struct LDLT_Traits; + + // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef + enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; +} + +/** \ingroup Cholesky_Module + * + * \class LDLT + * + * \brief Robust Cholesky decomposition of a matrix with pivoting + * + * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition + * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. + * The other triangular part won't be read. + * + * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite + * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L + * is lower triangular with a unit diagonal and D is a diagonal matrix. + * + * The decomposition uses pivoting to ensure stability, so that D will have + * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root + * on D also stabilizes the computation. + * + * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky + * decomposition to determine whether a system of equations has a solution. + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT + */ +template<typename _MatrixType, int _UpLo> class LDLT + : public SolverBase<LDLT<_MatrixType, _UpLo> > +{ + public: + typedef _MatrixType MatrixType; + typedef SolverBase<LDLT> Base; + friend class SolverBase<LDLT>; + + EIGEN_GENERIC_PUBLIC_INTERFACE(LDLT) + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, + UpLo = _UpLo + }; + typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType; + + typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; + typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; + + typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; + + /** \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via LDLT::compute(const MatrixType&). + */ + LDLT() + : m_matrix(), + m_transpositions(), + m_sign(internal::ZeroSign), + m_isInitialized(false) + {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa LDLT() + */ + explicit LDLT(Index size) + : m_matrix(size, size), + m_transpositions(size), + m_temporary(size), + m_sign(internal::ZeroSign), + m_isInitialized(false) + {} + + /** \brief Constructor with decomposition + * + * This calculates the decomposition for the input \a matrix. + * + * \sa LDLT(Index size) + */ + template<typename InputType> + explicit LDLT(const EigenBase<InputType>& matrix) + : m_matrix(matrix.rows(), matrix.cols()), + m_transpositions(matrix.rows()), + m_temporary(matrix.rows()), + m_sign(internal::ZeroSign), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** \brief Constructs a LDLT factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. + * + * \sa LDLT(const EigenBase&) + */ + template<typename InputType> + explicit LDLT(EigenBase<InputType>& matrix) + : m_matrix(matrix.derived()), + m_transpositions(matrix.rows()), + m_temporary(matrix.rows()), + m_sign(internal::ZeroSign), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** Clear any existing decomposition + * \sa rankUpdate(w,sigma) + */ + void setZero() + { + m_isInitialized = false; + } + + /** \returns a view of the upper triangular matrix U */ + inline typename Traits::MatrixU matrixU() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return Traits::getU(m_matrix); + } + + /** \returns a view of the lower triangular matrix L */ + inline typename Traits::MatrixL matrixL() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return Traits::getL(m_matrix); + } + + /** \returns the permutation matrix P as a transposition sequence. + */ + inline const TranspositionType& transpositionsP() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_transpositions; + } + + /** \returns the coefficients of the diagonal matrix D */ + inline Diagonal<const MatrixType> vectorD() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_matrix.diagonal(); + } + + /** \returns true if the matrix is positive (semidefinite) */ + inline bool isPositive() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; + } + + /** \returns true if the matrix is negative (semidefinite) */ + inline bool isNegative(void) const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . + * + * \note_about_checking_solutions + * + * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ + * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, + * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then + * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the + * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function + * computes the least-square solution of \f$ A x = b \f$ if \f$ A \f$ is singular. + * + * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() + */ + template<typename Rhs> + inline const Solve<LDLT, Rhs> + solve(const MatrixBase<Rhs>& b) const; + #endif + + template<typename Derived> + bool solveInPlace(MatrixBase<Derived> &bAndX) const; + + template<typename InputType> + LDLT& compute(const EigenBase<InputType>& matrix); + + /** \returns an estimate of the reciprocal condition number of the matrix of + * which \c *this is the LDLT decomposition. + */ + RealScalar rcond() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } + + template <typename Derived> + LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); + + /** \returns the internal LDLT decomposition matrix + * + * TODO: document the storage layout + */ + inline const MatrixType& matrixLDLT() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_matrix; + } + + MatrixType reconstructedMatrix() const; + + /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. + * + * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: + * \code x = decomposition.adjoint().solve(b) \endcode + */ + const LDLT& adjoint() const { return *this; }; + + EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } + EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the factorization failed because of a zero pivot. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_info; + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template<typename RhsType, typename DstType> + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template<bool Conjugate, typename RhsType, typename DstType> + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + /** \internal + * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. + * The strict upper part is used during the decomposition, the strict lower + * part correspond to the coefficients of L (its diagonal is equal to 1 and + * is not stored), and the diagonal entries correspond to D. + */ + MatrixType m_matrix; + RealScalar m_l1_norm; + TranspositionType m_transpositions; + TmpMatrixType m_temporary; + internal::SignMatrix m_sign; + bool m_isInitialized; + ComputationInfo m_info; +}; + +namespace internal { + +template<int UpLo> struct ldlt_inplace; + +template<> struct ldlt_inplace<Lower> +{ + template<typename MatrixType, typename TranspositionType, typename Workspace> + static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) + { + using std::abs; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename TranspositionType::StorageIndex IndexType; + eigen_assert(mat.rows()==mat.cols()); + const Index size = mat.rows(); + bool found_zero_pivot = false; + bool ret = true; + + if (size <= 1) + { + transpositions.setIdentity(); + if(size==0) sign = ZeroSign; + else if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef; + else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef; + else sign = ZeroSign; + return true; + } + + for (Index k = 0; k < size; ++k) + { + // Find largest diagonal element + Index index_of_biggest_in_corner; + mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); + index_of_biggest_in_corner += k; + + transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); + if(k != index_of_biggest_in_corner) + { + // apply the transposition while taking care to consider only + // the lower triangular part + Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element + mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); + mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); + std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); + for(Index i=k+1;i<index_of_biggest_in_corner;++i) + { + Scalar tmp = mat.coeffRef(i,k); + mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); + mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); + } + if(NumTraits<Scalar>::IsComplex) + mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); + } + + // partition the matrix: + // A00 | - | - + // lu = A10 | A11 | - + // A20 | A21 | A22 + Index rs = size - k - 1; + Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); + Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); + Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); + + if(k>0) + { + temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); + mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); + if(rs>0) + A21.noalias() -= A20 * temp.head(k); + } + + // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot + // was smaller than the cutoff value. However, since LDLT is not rank-revealing + // we should only make sure that we do not introduce INF or NaN values. + // Remark that LAPACK also uses 0 as the cutoff value. + RealScalar realAkk = numext::real(mat.coeffRef(k,k)); + bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); + + if(k==0 && !pivot_is_valid) + { + // The entire diagonal is zero, there is nothing more to do + // except filling the transpositions, and checking whether the matrix is zero. + sign = ZeroSign; + for(Index j = 0; j<size; ++j) + { + transpositions.coeffRef(j) = IndexType(j); + ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); + } + return ret; + } + + if((rs>0) && pivot_is_valid) + A21 /= realAkk; + else if(rs>0) + ret = ret && (A21.array()==Scalar(0)).all(); + + if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed + else if(!pivot_is_valid) found_zero_pivot = true; + + if (sign == PositiveSemiDef) { + if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite; + } else if (sign == NegativeSemiDef) { + if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite; + } else if (sign == ZeroSign) { + if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef; + else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef; + } + } + + return ret; + } + + // Reference for the algorithm: Davis and Hager, "Multiple Rank + // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) + // Trivial rearrangements of their computations (Timothy E. Holy) + // allow their algorithm to work for rank-1 updates even if the + // original matrix is not of full rank. + // Here only rank-1 updates are implemented, to reduce the + // requirement for intermediate storage and improve accuracy + template<typename MatrixType, typename WDerived> + static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) + { + using numext::isfinite; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + + const Index size = mat.rows(); + eigen_assert(mat.cols() == size && w.size()==size); + + RealScalar alpha = 1; + + // Apply the update + for (Index j = 0; j < size; j++) + { + // Check for termination due to an original decomposition of low-rank + if (!(isfinite)(alpha)) + break; + + // Update the diagonal terms + RealScalar dj = numext::real(mat.coeff(j,j)); + Scalar wj = w.coeff(j); + RealScalar swj2 = sigma*numext::abs2(wj); + RealScalar gamma = dj*alpha + swj2; + + mat.coeffRef(j,j) += swj2/alpha; + alpha += swj2/dj; + + + // Update the terms of L + Index rs = size-j-1; + w.tail(rs) -= wj * mat.col(j).tail(rs); + if(gamma != 0) + mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); + } + return true; + } + + template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> + static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) + { + // Apply the permutation to the input w + tmp = transpositions * w; + + return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); + } +}; + +template<> struct ldlt_inplace<Upper> +{ + template<typename MatrixType, typename TranspositionType, typename Workspace> + static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) + { + Transpose<MatrixType> matt(mat); + return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); + } + + template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> + static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) + { + Transpose<MatrixType> matt(mat); + return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); + } +}; + +template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> +{ + typedef const TriangularView<const MatrixType, UnitLower> MatrixL; + typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } +}; + +template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> +{ + typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; + typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } +}; + +} // end namespace internal + +/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix + */ +template<typename MatrixType, int _UpLo> +template<typename InputType> +LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) +{ + check_template_parameters(); + + eigen_assert(a.rows()==a.cols()); + const Index size = a.rows(); + + m_matrix = a.derived(); + + // Compute matrix L1 norm = max abs column sum. + m_l1_norm = RealScalar(0); + // TODO move this code to SelfAdjointView + for (Index col = 0; col < size; ++col) { + RealScalar abs_col_sum; + if (_UpLo == Lower) + abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); + else + abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); + if (abs_col_sum > m_l1_norm) + m_l1_norm = abs_col_sum; + } + + m_transpositions.resize(size); + m_isInitialized = false; + m_temporary.resize(size); + m_sign = internal::ZeroSign; + + m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; + + m_isInitialized = true; + return *this; +} + +/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. + * \param w a vector to be incorporated into the decomposition. + * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. + * \sa setZero() + */ +template<typename MatrixType, int _UpLo> +template<typename Derived> +LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma) +{ + typedef typename TranspositionType::StorageIndex IndexType; + const Index size = w.rows(); + if (m_isInitialized) + { + eigen_assert(m_matrix.rows()==size); + } + else + { + m_matrix.resize(size,size); + m_matrix.setZero(); + m_transpositions.resize(size); + for (Index i = 0; i < size; i++) + m_transpositions.coeffRef(i) = IndexType(i); + m_temporary.resize(size); + m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; + m_isInitialized = true; + } + + internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); + + return *this; +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template<typename _MatrixType, int _UpLo> +template<typename RhsType, typename DstType> +void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + _solve_impl_transposed<true>(rhs, dst); +} + +template<typename _MatrixType,int _UpLo> +template<bool Conjugate, typename RhsType, typename DstType> +void LDLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + // dst = P b + dst = m_transpositions * rhs; + + // dst = L^-1 (P b) + // dst = L^-*T (P b) + matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); + + // dst = D^-* (L^-1 P b) + // dst = D^-1 (L^-*T P b) + // more precisely, use pseudo-inverse of D (see bug 241) + using std::abs; + const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); + // In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min()) + // and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS: + // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); + // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest + // diagonal element is not well justified and leads to numerical issues in some cases. + // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. + // Using numeric_limits::min() gives us more robustness to denormals. + RealScalar tolerance = (std::numeric_limits<RealScalar>::min)(); + for (Index i = 0; i < vecD.size(); ++i) + { + if(abs(vecD(i)) > tolerance) + dst.row(i) /= vecD(i); + else + dst.row(i).setZero(); + } + + // dst = L^-* (D^-* L^-1 P b) + // dst = L^-T (D^-1 L^-*T P b) + matrixL().transpose().template conjugateIf<Conjugate>().solveInPlace(dst); + + // dst = P^T (L^-* D^-* L^-1 P b) = A^-1 b + // dst = P^-T (L^-T D^-1 L^-*T P b) = A^-1 b + dst = m_transpositions.transpose() * dst; +} +#endif + +/** \internal use x = ldlt_object.solve(x); + * + * This is the \em in-place version of solve(). + * + * \param bAndX represents both the right-hand side matrix b and result x. + * + * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. + * + * This version avoids a copy when the right hand side matrix b is not + * needed anymore. + * + * \sa LDLT::solve(), MatrixBase::ldlt() + */ +template<typename MatrixType,int _UpLo> +template<typename Derived> +bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const +{ + eigen_assert(m_isInitialized && "LDLT is not initialized."); + eigen_assert(m_matrix.rows() == bAndX.rows()); + + bAndX = this->solve(bAndX); + + return true; +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: P^T L D L^* P. + * This function is provided for debug purpose. */ +template<typename MatrixType, int _UpLo> +MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LDLT is not initialized."); + const Index size = m_matrix.rows(); + MatrixType res(size,size); + + // P + res.setIdentity(); + res = transpositionsP() * res; + // L^* P + res = matrixU() * res; + // D(L^*P) + res = vectorD().real().asDiagonal() * res; + // L(DL^*P) + res = matrixL() * res; + // P^T (LDL^*P) + res = transpositionsP().transpose() * res; + + return res; +} + +/** \cholesky_module + * \returns the Cholesky decomposition with full pivoting without square root of \c *this + * \sa MatrixBase::ldlt() + */ +template<typename MatrixType, unsigned int UpLo> +inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> +SelfAdjointView<MatrixType, UpLo>::ldlt() const +{ + return LDLT<PlainObject,UpLo>(m_matrix); +} + +/** \cholesky_module + * \returns the Cholesky decomposition with full pivoting without square root of \c *this + * \sa SelfAdjointView::ldlt() + */ +template<typename Derived> +inline const LDLT<typename MatrixBase<Derived>::PlainObject> +MatrixBase<Derived>::ldlt() const +{ + return LDLT<PlainObject>(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_LDLT_H diff --git a/Eigen/src/Cholesky/LLT.h b/Eigen/src/Cholesky/LLT.h new file mode 100644 index 0000000..8c9b2b3 --- /dev/null +++ b/Eigen/src/Cholesky/LLT.h @@ -0,0 +1,558 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LLT_H +#define EIGEN_LLT_H + +namespace Eigen { + +namespace internal{ + +template<typename _MatrixType, int _UpLo> struct traits<LLT<_MatrixType, _UpLo> > + : traits<_MatrixType> +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef int StorageIndex; + enum { Flags = 0 }; +}; + +template<typename MatrixType, int UpLo> struct LLT_Traits; +} + +/** \ingroup Cholesky_Module + * + * \class LLT + * + * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features + * + * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition + * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. + * The other triangular part won't be read. + * + * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite + * matrix A such that A = LL^* = U^*U, where L is lower triangular. + * + * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, + * for that purpose, we recommend the Cholesky decomposition without square root which is more stable + * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other + * situations like generalised eigen problems with hermitian matrices. + * + * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, + * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations + * has a solution. + * + * Example: \include LLT_example.cpp + * Output: \verbinclude LLT_example.out + * + * \b Performance: for best performance, it is recommended to use a column-major storage format + * with the Lower triangular part (the default), or, equivalently, a row-major storage format + * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization + * step, and rank-updates can be up to 3 times slower. + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered. + * Therefore, the strict lower part does not have to store correct values. + * + * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT + */ +template<typename _MatrixType, int _UpLo> class LLT + : public SolverBase<LLT<_MatrixType, _UpLo> > +{ + public: + typedef _MatrixType MatrixType; + typedef SolverBase<LLT> Base; + friend class SolverBase<LLT>; + + EIGEN_GENERIC_PUBLIC_INTERFACE(LLT) + enum { + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + enum { + PacketSize = internal::packet_traits<Scalar>::size, + AlignmentMask = int(PacketSize)-1, + UpLo = _UpLo + }; + + typedef internal::LLT_Traits<MatrixType,UpLo> Traits; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via LLT::compute(const MatrixType&). + */ + LLT() : m_matrix(), m_isInitialized(false) {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa LLT() + */ + explicit LLT(Index size) : m_matrix(size, size), + m_isInitialized(false) {} + + template<typename InputType> + explicit LLT(const EigenBase<InputType>& matrix) + : m_matrix(matrix.rows(), matrix.cols()), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** \brief Constructs a LLT factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when + * \c MatrixType is a Eigen::Ref. + * + * \sa LLT(const EigenBase&) + */ + template<typename InputType> + explicit LLT(EigenBase<InputType>& matrix) + : m_matrix(matrix.derived()), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** \returns a view of the upper triangular matrix U */ + inline typename Traits::MatrixU matrixU() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return Traits::getU(m_matrix); + } + + /** \returns a view of the lower triangular matrix L */ + inline typename Traits::MatrixL matrixL() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return Traits::getL(m_matrix); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * Since this LLT class assumes anyway that the matrix A is invertible, the solution + * theoretically exists and is unique regardless of b. + * + * Example: \include LLT_solve.cpp + * Output: \verbinclude LLT_solve.out + * + * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() + */ + template<typename Rhs> + inline const Solve<LLT, Rhs> + solve(const MatrixBase<Rhs>& b) const; + #endif + + template<typename Derived> + void solveInPlace(const MatrixBase<Derived> &bAndX) const; + + template<typename InputType> + LLT& compute(const EigenBase<InputType>& matrix); + + /** \returns an estimate of the reciprocal condition number of the matrix of + * which \c *this is the Cholesky decomposition. + */ + RealScalar rcond() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } + + /** \returns the LLT decomposition matrix + * + * TODO: document the storage layout + */ + inline const MatrixType& matrixLLT() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return m_matrix; + } + + MatrixType reconstructedMatrix() const; + + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix.appears not to be positive definite. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return m_info; + } + + /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. + * + * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: + * \code x = decomposition.adjoint().solve(b) \endcode + */ + const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; }; + + inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } + inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + + template<typename VectorType> + LLT & rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template<typename RhsType, typename DstType> + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template<bool Conjugate, typename RhsType, typename DstType> + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + /** \internal + * Used to compute and store L + * The strict upper part is not used and even not initialized. + */ + MatrixType m_matrix; + RealScalar m_l1_norm; + bool m_isInitialized; + ComputationInfo m_info; +}; + +namespace internal { + +template<typename Scalar, int UpLo> struct llt_inplace; + +template<typename MatrixType, typename VectorType> +static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) +{ + using std::sqrt; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::ColXpr ColXpr; + typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; + typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; + typedef Matrix<Scalar,Dynamic,1> TempVectorType; + typedef typename TempVectorType::SegmentReturnType TempVecSegment; + + Index n = mat.cols(); + eigen_assert(mat.rows()==n && vec.size()==n); + + TempVectorType temp; + + if(sigma>0) + { + // This version is based on Givens rotations. + // It is faster than the other one below, but only works for updates, + // i.e., for sigma > 0 + temp = sqrt(sigma) * vec; + + for(Index i=0; i<n; ++i) + { + JacobiRotation<Scalar> g; + g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); + + Index rs = n-i-1; + if(rs>0) + { + ColXprSegment x(mat.col(i).tail(rs)); + TempVecSegment y(temp.tail(rs)); + apply_rotation_in_the_plane(x, y, g); + } + } + } + else + { + temp = vec; + RealScalar beta = 1; + for(Index j=0; j<n; ++j) + { + RealScalar Ljj = numext::real(mat.coeff(j,j)); + RealScalar dj = numext::abs2(Ljj); + Scalar wj = temp.coeff(j); + RealScalar swj2 = sigma*numext::abs2(wj); + RealScalar gamma = dj*beta + swj2; + + RealScalar x = dj + swj2/beta; + if (x<=RealScalar(0)) + return j; + RealScalar nLjj = sqrt(x); + mat.coeffRef(j,j) = nLjj; + beta += swj2/dj; + + // Update the terms of L + Index rs = n-j-1; + if(rs) + { + temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); + if(gamma != 0) + mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); + } + } + } + return -1; +} + +template<typename Scalar> struct llt_inplace<Scalar, Lower> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + template<typename MatrixType> + static Index unblocked(MatrixType& mat) + { + using std::sqrt; + + eigen_assert(mat.rows()==mat.cols()); + const Index size = mat.rows(); + for(Index k = 0; k < size; ++k) + { + Index rs = size-k-1; // remaining size + + Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); + Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); + Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); + + RealScalar x = numext::real(mat.coeff(k,k)); + if (k>0) x -= A10.squaredNorm(); + if (x<=RealScalar(0)) + return k; + mat.coeffRef(k,k) = x = sqrt(x); + if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); + if (rs>0) A21 /= x; + } + return -1; + } + + template<typename MatrixType> + static Index blocked(MatrixType& m) + { + eigen_assert(m.rows()==m.cols()); + Index size = m.rows(); + if(size<32) + return unblocked(m); + + Index blockSize = size/8; + blockSize = (blockSize/16)*16; + blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); + + for (Index k=0; k<size; k+=blockSize) + { + // partition the matrix: + // A00 | - | - + // lu = A10 | A11 | - + // A20 | A21 | A22 + Index bs = (std::min)(blockSize, size-k); + Index rs = size - k - bs; + Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); + Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); + Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); + + Index ret; + if((ret=unblocked(A11))>=0) return k+ret; + if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); + if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck + } + return -1; + } + + template<typename MatrixType, typename VectorType> + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) + { + return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); + } +}; + +template<typename Scalar> struct llt_inplace<Scalar, Upper> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + + template<typename MatrixType> + static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) + { + Transpose<MatrixType> matt(mat); + return llt_inplace<Scalar, Lower>::unblocked(matt); + } + template<typename MatrixType> + static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) + { + Transpose<MatrixType> matt(mat); + return llt_inplace<Scalar, Lower>::blocked(matt); + } + template<typename MatrixType, typename VectorType> + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) + { + Transpose<MatrixType> matt(mat); + return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); + } +}; + +template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> +{ + typedef const TriangularView<const MatrixType, Lower> MatrixL; + typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } + static bool inplace_decomposition(MatrixType& m) + { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } +}; + +template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> +{ + typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; + typedef const TriangularView<const MatrixType, Upper> MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } + static bool inplace_decomposition(MatrixType& m) + { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } +}; + +} // end namespace internal + +/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix + * + * \returns a reference to *this + * + * Example: \include TutorialLinAlgComputeTwice.cpp + * Output: \verbinclude TutorialLinAlgComputeTwice.out + */ +template<typename MatrixType, int _UpLo> +template<typename InputType> +LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) +{ + check_template_parameters(); + + eigen_assert(a.rows()==a.cols()); + const Index size = a.rows(); + m_matrix.resize(size, size); + if (!internal::is_same_dense(m_matrix, a.derived())) + m_matrix = a.derived(); + + // Compute matrix L1 norm = max abs column sum. + m_l1_norm = RealScalar(0); + // TODO move this code to SelfAdjointView + for (Index col = 0; col < size; ++col) { + RealScalar abs_col_sum; + if (_UpLo == Lower) + abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); + else + abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); + if (abs_col_sum > m_l1_norm) + m_l1_norm = abs_col_sum; + } + + m_isInitialized = true; + bool ok = Traits::inplace_decomposition(m_matrix); + m_info = ok ? Success : NumericalIssue; + + return *this; +} + +/** Performs a rank one update (or dowdate) of the current decomposition. + * If A = LL^* before the rank one update, + * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector + * of same dimension. + */ +template<typename _MatrixType, int _UpLo> +template<typename VectorType> +LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); + eigen_assert(v.size()==m_matrix.cols()); + eigen_assert(m_isInitialized); + if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) + m_info = NumericalIssue; + else + m_info = Success; + + return *this; +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template<typename _MatrixType,int _UpLo> +template<typename RhsType, typename DstType> +void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + _solve_impl_transposed<true>(rhs, dst); +} + +template<typename _MatrixType,int _UpLo> +template<bool Conjugate, typename RhsType, typename DstType> +void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + dst = rhs; + + matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); + matrixU().template conjugateIf<!Conjugate>().solveInPlace(dst); +} +#endif + +/** \internal use x = llt_object.solve(x); + * + * This is the \em in-place version of solve(). + * + * \param bAndX represents both the right-hand side matrix b and result x. + * + * This version avoids a copy when the right hand side matrix b is not needed anymore. + * + * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. + * This function will const_cast it, so constness isn't honored here. + * + * \sa LLT::solve(), MatrixBase::llt() + */ +template<typename MatrixType, int _UpLo> +template<typename Derived> +void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const +{ + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(m_matrix.rows()==bAndX.rows()); + matrixL().solveInPlace(bAndX); + matrixU().solveInPlace(bAndX); +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: L L^*. + * This function is provided for debug purpose. */ +template<typename MatrixType, int _UpLo> +MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LLT is not initialized."); + return matrixL() * matrixL().adjoint().toDenseMatrix(); +} + +/** \cholesky_module + * \returns the LLT decomposition of \c *this + * \sa SelfAdjointView::llt() + */ +template<typename Derived> +inline const LLT<typename MatrixBase<Derived>::PlainObject> +MatrixBase<Derived>::llt() const +{ + return LLT<PlainObject>(derived()); +} + +/** \cholesky_module + * \returns the LLT decomposition of \c *this + * \sa SelfAdjointView::llt() + */ +template<typename MatrixType, unsigned int UpLo> +inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> +SelfAdjointView<MatrixType, UpLo>::llt() const +{ + return LLT<PlainObject,UpLo>(m_matrix); +} + +} // end namespace Eigen + +#endif // EIGEN_LLT_H diff --git a/Eigen/src/Cholesky/LLT_LAPACKE.h b/Eigen/src/Cholesky/LLT_LAPACKE.h new file mode 100644 index 0000000..bc6489e --- /dev/null +++ b/Eigen/src/Cholesky/LLT_LAPACKE.h @@ -0,0 +1,99 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * LLt decomposition based on LAPACKE_?potrf function. + ******************************************************************************** +*/ + +#ifndef EIGEN_LLT_LAPACKE_H +#define EIGEN_LLT_LAPACKE_H + +namespace Eigen { + +namespace internal { + +template<typename Scalar> struct lapacke_llt; + +#define EIGEN_LAPACKE_LLT(EIGTYPE, BLASTYPE, LAPACKE_PREFIX) \ +template<> struct lapacke_llt<EIGTYPE> \ +{ \ + template<typename MatrixType> \ + static inline Index potrf(MatrixType& m, char uplo) \ + { \ + lapack_int matrix_order; \ + lapack_int size, lda, info, StorageOrder; \ + EIGTYPE* a; \ + eigen_assert(m.rows()==m.cols()); \ + /* Set up parameters for ?potrf */ \ + size = convert_index<lapack_int>(m.rows()); \ + StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \ + matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \ + a = &(m.coeffRef(0,0)); \ + lda = convert_index<lapack_int>(m.outerStride()); \ +\ + info = LAPACKE_##LAPACKE_PREFIX##potrf( matrix_order, uplo, size, (BLASTYPE*)a, lda ); \ + info = (info==0) ? -1 : info>0 ? info-1 : size; \ + return info; \ + } \ +}; \ +template<> struct llt_inplace<EIGTYPE, Lower> \ +{ \ + template<typename MatrixType> \ + static Index blocked(MatrixType& m) \ + { \ + return lapacke_llt<EIGTYPE>::potrf(m, 'L'); \ + } \ + template<typename MatrixType, typename VectorType> \ + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ + { return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \ +}; \ +template<> struct llt_inplace<EIGTYPE, Upper> \ +{ \ + template<typename MatrixType> \ + static Index blocked(MatrixType& m) \ + { \ + return lapacke_llt<EIGTYPE>::potrf(m, 'U'); \ + } \ + template<typename MatrixType, typename VectorType> \ + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ + { \ + Transpose<MatrixType> matt(mat); \ + return llt_inplace<EIGTYPE, Lower>::rankUpdate(matt, vec.conjugate(), sigma); \ + } \ +}; + +EIGEN_LAPACKE_LLT(double, double, d) +EIGEN_LAPACKE_LLT(float, float, s) +EIGEN_LAPACKE_LLT(dcomplex, lapack_complex_double, z) +EIGEN_LAPACKE_LLT(scomplex, lapack_complex_float, c) + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_LLT_LAPACKE_H |