summaryrefslogtreecommitdiff
path: root/Eigen/src/Core/arch/AVX512/MathFunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core/arch/AVX512/MathFunctions.h')
-rw-r--r--Eigen/src/Core/arch/AVX512/MathFunctions.h362
1 files changed, 362 insertions, 0 deletions
diff --git a/Eigen/src/Core/arch/AVX512/MathFunctions.h b/Eigen/src/Core/arch/AVX512/MathFunctions.h
new file mode 100644
index 0000000..6fd726d
--- /dev/null
+++ b/Eigen/src/Core/arch/AVX512/MathFunctions.h
@@ -0,0 +1,362 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Pedro Gonnet (pedro.gonnet@gmail.com)
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_
+#define THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_
+
+namespace Eigen {
+
+namespace internal {
+
+// Disable the code for older versions of gcc that don't support many of the required avx512 instrinsics.
+#if EIGEN_GNUC_AT_LEAST(5, 3) || EIGEN_COMP_CLANG || EIGEN_COMP_MSVC >= 1923
+
+#define _EIGEN_DECLARE_CONST_Packet16f(NAME, X) \
+ const Packet16f p16f_##NAME = pset1<Packet16f>(X)
+
+#define _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(NAME, X) \
+ const Packet16f p16f_##NAME = preinterpret<Packet16f,Packet16i>(pset1<Packet16i>(X))
+
+#define _EIGEN_DECLARE_CONST_Packet8d(NAME, X) \
+ const Packet8d p8d_##NAME = pset1<Packet8d>(X)
+
+#define _EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(NAME, X) \
+ const Packet8d p8d_##NAME = _mm512_castsi512_pd(_mm512_set1_epi64(X))
+
+#define _EIGEN_DECLARE_CONST_Packet16bf(NAME, X) \
+ const Packet16bf p16bf_##NAME = pset1<Packet16bf>(X)
+
+#define _EIGEN_DECLARE_CONST_Packet16bf_FROM_INT(NAME, X) \
+ const Packet16bf p16bf_##NAME = preinterpret<Packet16bf,Packet16i>(pset1<Packet16i>(X))
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
+plog<Packet16f>(const Packet16f& _x) {
+ return plog_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
+plog<Packet8d>(const Packet8d& _x) {
+ return plog_double(_x);
+}
+
+F16_PACKET_FUNCTION(Packet16f, Packet16h, plog)
+BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog)
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
+plog2<Packet16f>(const Packet16f& _x) {
+ return plog2_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
+plog2<Packet8d>(const Packet8d& _x) {
+ return plog2_double(_x);
+}
+
+F16_PACKET_FUNCTION(Packet16f, Packet16h, plog2)
+BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog2)
+
+// Exponential function. Works by writing "x = m*log(2) + r" where
+// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
+// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
+pexp<Packet16f>(const Packet16f& _x) {
+ _EIGEN_DECLARE_CONST_Packet16f(1, 1.0f);
+ _EIGEN_DECLARE_CONST_Packet16f(half, 0.5f);
+ _EIGEN_DECLARE_CONST_Packet16f(127, 127.0f);
+
+ _EIGEN_DECLARE_CONST_Packet16f(exp_hi, 88.3762626647950f);
+ _EIGEN_DECLARE_CONST_Packet16f(exp_lo, -88.3762626647949f);
+
+ _EIGEN_DECLARE_CONST_Packet16f(cephes_LOG2EF, 1.44269504088896341f);
+
+ _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p0, 1.9875691500E-4f);
+ _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p1, 1.3981999507E-3f);
+ _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p2, 8.3334519073E-3f);
+ _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p3, 4.1665795894E-2f);
+ _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p4, 1.6666665459E-1f);
+ _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p5, 5.0000001201E-1f);
+
+ // Clamp x.
+ Packet16f x = pmax(pmin(_x, p16f_exp_hi), p16f_exp_lo);
+
+ // Express exp(x) as exp(m*ln(2) + r), start by extracting
+ // m = floor(x/ln(2) + 0.5).
+ Packet16f m = _mm512_floor_ps(pmadd(x, p16f_cephes_LOG2EF, p16f_half));
+
+ // Get r = x - m*ln(2). Note that we can do this without losing more than one
+ // ulp precision due to the FMA instruction.
+ _EIGEN_DECLARE_CONST_Packet16f(nln2, -0.6931471805599453f);
+ Packet16f r = _mm512_fmadd_ps(m, p16f_nln2, x);
+ Packet16f r2 = pmul(r, r);
+ Packet16f r3 = pmul(r2, r);
+
+ // Evaluate the polynomial approximant,improved by instruction-level parallelism.
+ Packet16f y, y1, y2;
+ y = pmadd(p16f_cephes_exp_p0, r, p16f_cephes_exp_p1);
+ y1 = pmadd(p16f_cephes_exp_p3, r, p16f_cephes_exp_p4);
+ y2 = padd(r, p16f_1);
+ y = pmadd(y, r, p16f_cephes_exp_p2);
+ y1 = pmadd(y1, r, p16f_cephes_exp_p5);
+ y = pmadd(y, r3, y1);
+ y = pmadd(y, r2, y2);
+
+ // Build emm0 = 2^m.
+ Packet16i emm0 = _mm512_cvttps_epi32(padd(m, p16f_127));
+ emm0 = _mm512_slli_epi32(emm0, 23);
+
+ // Return 2^m * exp(r).
+ return pmax(pmul(y, _mm512_castsi512_ps(emm0)), _x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
+pexp<Packet8d>(const Packet8d& _x) {
+ return pexp_double(_x);
+}
+
+F16_PACKET_FUNCTION(Packet16f, Packet16h, pexp)
+BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pexp)
+
+template <>
+EIGEN_STRONG_INLINE Packet16h pfrexp(const Packet16h& a, Packet16h& exponent) {
+ Packet16f fexponent;
+ const Packet16h out = float2half(pfrexp<Packet16f>(half2float(a), fexponent));
+ exponent = float2half(fexponent);
+ return out;
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet16h pldexp(const Packet16h& a, const Packet16h& exponent) {
+ return float2half(pldexp<Packet16f>(half2float(a), half2float(exponent)));
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet16bf pfrexp(const Packet16bf& a, Packet16bf& exponent) {
+ Packet16f fexponent;
+ const Packet16bf out = F32ToBf16(pfrexp<Packet16f>(Bf16ToF32(a), fexponent));
+ exponent = F32ToBf16(fexponent);
+ return out;
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet16bf pldexp(const Packet16bf& a, const Packet16bf& exponent) {
+ return F32ToBf16(pldexp<Packet16f>(Bf16ToF32(a), Bf16ToF32(exponent)));
+}
+
+// Functions for sqrt.
+// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
+// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
+// exact solution. The main advantage of this approach is not just speed, but
+// also the fact that it can be inlined and pipelined with other computations,
+// further reducing its effective latency.
+#if EIGEN_FAST_MATH
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
+psqrt<Packet16f>(const Packet16f& _x) {
+ Packet16f neg_half = pmul(_x, pset1<Packet16f>(-.5f));
+ __mmask16 denormal_mask = _mm512_kand(
+ _mm512_cmp_ps_mask(_x, pset1<Packet16f>((std::numeric_limits<float>::min)()),
+ _CMP_LT_OQ),
+ _mm512_cmp_ps_mask(_x, _mm512_setzero_ps(), _CMP_GE_OQ));
+
+ Packet16f x = _mm512_rsqrt14_ps(_x);
+
+ // Do a single step of Newton's iteration.
+ x = pmul(x, pmadd(neg_half, pmul(x, x), pset1<Packet16f>(1.5f)));
+
+ // Flush results for denormals to zero.
+ return _mm512_mask_blend_ps(denormal_mask, pmul(_x,x), _mm512_setzero_ps());
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
+psqrt<Packet8d>(const Packet8d& _x) {
+ Packet8d neg_half = pmul(_x, pset1<Packet8d>(-.5));
+ __mmask16 denormal_mask = _mm512_kand(
+ _mm512_cmp_pd_mask(_x, pset1<Packet8d>((std::numeric_limits<double>::min)()),
+ _CMP_LT_OQ),
+ _mm512_cmp_pd_mask(_x, _mm512_setzero_pd(), _CMP_GE_OQ));
+
+ Packet8d x = _mm512_rsqrt14_pd(_x);
+
+ // Do a single step of Newton's iteration.
+ x = pmul(x, pmadd(neg_half, pmul(x, x), pset1<Packet8d>(1.5)));
+
+ // Do a second step of Newton's iteration.
+ x = pmul(x, pmadd(neg_half, pmul(x, x), pset1<Packet8d>(1.5)));
+
+ return _mm512_mask_blend_pd(denormal_mask, pmul(_x,x), _mm512_setzero_pd());
+}
+#else
+template <>
+EIGEN_STRONG_INLINE Packet16f psqrt<Packet16f>(const Packet16f& x) {
+ return _mm512_sqrt_ps(x);
+}
+
+template <>
+EIGEN_STRONG_INLINE Packet8d psqrt<Packet8d>(const Packet8d& x) {
+ return _mm512_sqrt_pd(x);
+}
+#endif
+
+F16_PACKET_FUNCTION(Packet16f, Packet16h, psqrt)
+BF16_PACKET_FUNCTION(Packet16f, Packet16bf, psqrt)
+
+// prsqrt for float.
+#if defined(EIGEN_VECTORIZE_AVX512ER)
+
+template <>
+EIGEN_STRONG_INLINE Packet16f prsqrt<Packet16f>(const Packet16f& x) {
+ return _mm512_rsqrt28_ps(x);
+}
+#elif EIGEN_FAST_MATH
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
+prsqrt<Packet16f>(const Packet16f& _x) {
+ _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(inf, 0x7f800000);
+ _EIGEN_DECLARE_CONST_Packet16f(one_point_five, 1.5f);
+ _EIGEN_DECLARE_CONST_Packet16f(minus_half, -0.5f);
+
+ Packet16f neg_half = pmul(_x, p16f_minus_half);
+
+ // Identity infinite, negative and denormal arguments.
+ __mmask16 inf_mask = _mm512_cmp_ps_mask(_x, p16f_inf, _CMP_EQ_OQ);
+ __mmask16 not_pos_mask = _mm512_cmp_ps_mask(_x, _mm512_setzero_ps(), _CMP_LE_OQ);
+ __mmask16 not_finite_pos_mask = not_pos_mask | inf_mask;
+
+ // Compute an approximate result using the rsqrt intrinsic, forcing +inf
+ // for denormals for consistency with AVX and SSE implementations.
+ Packet16f y_approx = _mm512_rsqrt14_ps(_x);
+
+ // Do a single step of Newton-Raphson iteration to improve the approximation.
+ // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
+ // It is essential to evaluate the inner term like this because forming
+ // y_n^2 may over- or underflow.
+ Packet16f y_newton = pmul(y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p16f_one_point_five));
+
+ // Select the result of the Newton-Raphson step for positive finite arguments.
+ // For other arguments, choose the output of the intrinsic. This will
+ // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(0) = +inf.
+ return _mm512_mask_blend_ps(not_finite_pos_mask, y_newton, y_approx);
+}
+#else
+
+template <>
+EIGEN_STRONG_INLINE Packet16f prsqrt<Packet16f>(const Packet16f& x) {
+ _EIGEN_DECLARE_CONST_Packet16f(one, 1.0f);
+ return _mm512_div_ps(p16f_one, _mm512_sqrt_ps(x));
+}
+#endif
+
+F16_PACKET_FUNCTION(Packet16f, Packet16h, prsqrt)
+BF16_PACKET_FUNCTION(Packet16f, Packet16bf, prsqrt)
+
+// prsqrt for double.
+#if EIGEN_FAST_MATH
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
+prsqrt<Packet8d>(const Packet8d& _x) {
+ _EIGEN_DECLARE_CONST_Packet8d(one_point_five, 1.5);
+ _EIGEN_DECLARE_CONST_Packet8d(minus_half, -0.5);
+ _EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(inf, 0x7ff0000000000000LL);
+
+ Packet8d neg_half = pmul(_x, p8d_minus_half);
+
+ // Identity infinite, negative and denormal arguments.
+ __mmask8 inf_mask = _mm512_cmp_pd_mask(_x, p8d_inf, _CMP_EQ_OQ);
+ __mmask8 not_pos_mask = _mm512_cmp_pd_mask(_x, _mm512_setzero_pd(), _CMP_LE_OQ);
+ __mmask8 not_finite_pos_mask = not_pos_mask | inf_mask;
+
+ // Compute an approximate result using the rsqrt intrinsic, forcing +inf
+ // for denormals for consistency with AVX and SSE implementations.
+#if defined(EIGEN_VECTORIZE_AVX512ER)
+ Packet8d y_approx = _mm512_rsqrt28_pd(_x);
+#else
+ Packet8d y_approx = _mm512_rsqrt14_pd(_x);
+#endif
+ // Do one or two steps of Newton-Raphson's to improve the approximation, depending on the
+ // starting accuracy (either 2^-14 or 2^-28, depending on whether AVX512ER is available).
+ // The Newton-Raphson algorithm has quadratic convergence and roughly doubles the number
+ // of correct digits for each step.
+ // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
+ // It is essential to evaluate the inner term like this because forming
+ // y_n^2 may over- or underflow.
+ Packet8d y_newton = pmul(y_approx, pmadd(neg_half, pmul(y_approx, y_approx), p8d_one_point_five));
+#if !defined(EIGEN_VECTORIZE_AVX512ER)
+ y_newton = pmul(y_newton, pmadd(y_newton, pmul(neg_half, y_newton), p8d_one_point_five));
+#endif
+ // Select the result of the Newton-Raphson step for positive finite arguments.
+ // For other arguments, choose the output of the intrinsic. This will
+ // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(0) = +inf.
+ return _mm512_mask_blend_pd(not_finite_pos_mask, y_newton, y_approx);
+}
+#else
+template <>
+EIGEN_STRONG_INLINE Packet8d prsqrt<Packet8d>(const Packet8d& x) {
+ _EIGEN_DECLARE_CONST_Packet8d(one, 1.0f);
+ return _mm512_div_pd(p8d_one, _mm512_sqrt_pd(x));
+}
+#endif
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet16f plog1p<Packet16f>(const Packet16f& _x) {
+ return generic_plog1p(_x);
+}
+
+F16_PACKET_FUNCTION(Packet16f, Packet16h, plog1p)
+BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog1p)
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet16f pexpm1<Packet16f>(const Packet16f& _x) {
+ return generic_expm1(_x);
+}
+
+F16_PACKET_FUNCTION(Packet16f, Packet16h, pexpm1)
+BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pexpm1)
+
+#endif
+
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
+psin<Packet16f>(const Packet16f& _x) {
+ return psin_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
+pcos<Packet16f>(const Packet16f& _x) {
+ return pcos_float(_x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
+ptanh<Packet16f>(const Packet16f& _x) {
+ return internal::generic_fast_tanh_float(_x);
+}
+
+F16_PACKET_FUNCTION(Packet16f, Packet16h, psin)
+F16_PACKET_FUNCTION(Packet16f, Packet16h, pcos)
+F16_PACKET_FUNCTION(Packet16f, Packet16h, ptanh)
+
+BF16_PACKET_FUNCTION(Packet16f, Packet16bf, psin)
+BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pcos)
+BF16_PACKET_FUNCTION(Packet16f, Packet16bf, ptanh)
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_