summaryrefslogtreecommitdiff
path: root/Eigen/src/Core/functors
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core/functors')
-rw-r--r--Eigen/src/Core/functors/AssignmentFunctors.h177
-rw-r--r--Eigen/src/Core/functors/BinaryFunctors.h541
-rw-r--r--Eigen/src/Core/functors/NullaryFunctors.h189
-rw-r--r--Eigen/src/Core/functors/StlFunctors.h166
-rw-r--r--Eigen/src/Core/functors/TernaryFunctors.h25
-rw-r--r--Eigen/src/Core/functors/UnaryFunctors.h1131
6 files changed, 2229 insertions, 0 deletions
diff --git a/Eigen/src/Core/functors/AssignmentFunctors.h b/Eigen/src/Core/functors/AssignmentFunctors.h
new file mode 100644
index 0000000..bf64ef4
--- /dev/null
+++ b/Eigen/src/Core/functors/AssignmentFunctors.h
@@ -0,0 +1,177 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_ASSIGNMENT_FUNCTORS_H
+#define EIGEN_ASSIGNMENT_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment
+ *
+ */
+template<typename DstScalar,typename SrcScalar> struct assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a = b; }
+
+ template<int Alignment, typename Packet>
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,b); }
+};
+
+// Empty overload for void type (used by PermutationMatrix)
+template<typename DstScalar> struct assign_op<DstScalar,void> {};
+
+template<typename DstScalar,typename SrcScalar>
+struct functor_traits<assign_op<DstScalar,SrcScalar> > {
+ enum {
+ Cost = NumTraits<DstScalar>::ReadCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::Vectorizable && packet_traits<SrcScalar>::Vectorizable
+ };
+};
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment with addition
+ *
+ */
+template<typename DstScalar,typename SrcScalar> struct add_assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(add_assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a += b; }
+
+ template<int Alignment, typename Packet>
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,internal::padd(internal::ploadt<Packet,Alignment>(a),b)); }
+};
+template<typename DstScalar,typename SrcScalar>
+struct functor_traits<add_assign_op<DstScalar,SrcScalar> > {
+ enum {
+ Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::AddCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasAdd
+ };
+};
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment with subtraction
+ *
+ */
+template<typename DstScalar,typename SrcScalar> struct sub_assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(sub_assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a -= b; }
+
+ template<int Alignment, typename Packet>
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,internal::psub(internal::ploadt<Packet,Alignment>(a),b)); }
+};
+template<typename DstScalar,typename SrcScalar>
+struct functor_traits<sub_assign_op<DstScalar,SrcScalar> > {
+ enum {
+ Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::AddCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasSub
+ };
+};
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment with multiplication
+ *
+ */
+template<typename DstScalar, typename SrcScalar=DstScalar>
+struct mul_assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(mul_assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a *= b; }
+
+ template<int Alignment, typename Packet>
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,internal::pmul(internal::ploadt<Packet,Alignment>(a),b)); }
+};
+template<typename DstScalar, typename SrcScalar>
+struct functor_traits<mul_assign_op<DstScalar,SrcScalar> > {
+ enum {
+ Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::MulCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasMul
+ };
+};
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment with diviving
+ *
+ */
+template<typename DstScalar, typename SrcScalar=DstScalar> struct div_assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(div_assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a /= b; }
+
+ template<int Alignment, typename Packet>
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,internal::pdiv(internal::ploadt<Packet,Alignment>(a),b)); }
+};
+template<typename DstScalar, typename SrcScalar>
+struct functor_traits<div_assign_op<DstScalar,SrcScalar> > {
+ enum {
+ Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::MulCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasDiv
+ };
+};
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment with swapping
+ *
+ * It works as follow. For a non-vectorized evaluation loop, we have:
+ * for(i) func(A.coeffRef(i), B.coeff(i));
+ * where B is a SwapWrapper expression. The trick is to make SwapWrapper::coeff behaves like a non-const coeffRef.
+ * Actually, SwapWrapper might not even be needed since even if B is a plain expression, since it has to be writable
+ * B.coeff already returns a const reference to the underlying scalar value.
+ *
+ * The case of a vectorized loop is more tricky:
+ * for(i,j) func.assignPacket<A_Align>(&A.coeffRef(i,j), B.packet<B_Align>(i,j));
+ * Here, B must be a SwapWrapper whose packet function actually returns a proxy object holding a Scalar*,
+ * the actual alignment and Packet type.
+ *
+ */
+template<typename Scalar> struct swap_assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(swap_assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Scalar& a, const Scalar& b) const
+ {
+#ifdef EIGEN_GPUCC
+ // FIXME is there some kind of cuda::swap?
+ Scalar t=b; const_cast<Scalar&>(b)=a; a=t;
+#else
+ using std::swap;
+ swap(a,const_cast<Scalar&>(b));
+#endif
+ }
+};
+template<typename Scalar>
+struct functor_traits<swap_assign_op<Scalar> > {
+ enum {
+ Cost = 3 * NumTraits<Scalar>::ReadCost,
+ PacketAccess =
+ #if defined(EIGEN_VECTORIZE_AVX) && EIGEN_COMP_CLANG && (EIGEN_COMP_CLANG<800 || defined(__apple_build_version__))
+ // This is a partial workaround for a bug in clang generating bad code
+ // when mixing 256/512 bits loads and 128 bits moves.
+ // See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=1684
+ // https://bugs.llvm.org/show_bug.cgi?id=40815
+ 0
+ #else
+ packet_traits<Scalar>::Vectorizable
+ #endif
+ };
+};
+
+} // namespace internal
+
+} // namespace Eigen
+
+#endif // EIGEN_ASSIGNMENT_FUNCTORS_H
diff --git a/Eigen/src/Core/functors/BinaryFunctors.h b/Eigen/src/Core/functors/BinaryFunctors.h
new file mode 100644
index 0000000..63f09ab
--- /dev/null
+++ b/Eigen/src/Core/functors/BinaryFunctors.h
@@ -0,0 +1,541 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_BINARY_FUNCTORS_H
+#define EIGEN_BINARY_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+//---------- associative binary functors ----------
+
+template<typename Arg1, typename Arg2>
+struct binary_op_base
+{
+ typedef Arg1 first_argument_type;
+ typedef Arg2 second_argument_type;
+};
+
+/** \internal
+ * \brief Template functor to compute the sum of two scalars
+ *
+ * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, DenseBase::sum()
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_sum_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_sum_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
+#else
+ scalar_sum_op() {
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a + b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::padd(a,b); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const
+ { return internal::predux(a); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_sum_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = (int(NumTraits<LhsScalar>::AddCost) + int(NumTraits<RhsScalar>::AddCost)) / 2, // rough estimate!
+ PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasAdd && packet_traits<RhsScalar>::HasAdd
+ // TODO vectorize mixed sum
+ };
+};
+
+
+template<>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool scalar_sum_op<bool,bool>::operator() (const bool& a, const bool& b) const { return a || b; }
+
+
+/** \internal
+ * \brief Template functor to compute the product of two scalars
+ *
+ * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_product_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_product_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
+#else
+ scalar_product_op() {
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::pmul(a,b); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const
+ { return internal::predux_mul(a); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = (int(NumTraits<LhsScalar>::MulCost) + int(NumTraits<RhsScalar>::MulCost))/2, // rough estimate!
+ PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
+ // TODO vectorize mixed product
+ };
+};
+
+template<>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool scalar_product_op<bool,bool>::operator() (const bool& a, const bool& b) const { return a && b; }
+
+
+/** \internal
+ * \brief Template functor to compute the conjugate product of two scalars
+ *
+ * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_conj_product_op : binary_op_base<LhsScalar,RhsScalar>
+{
+
+ enum {
+ Conj = NumTraits<LhsScalar>::IsComplex
+ };
+
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_conj_product_op>::ReturnType result_type;
+
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const
+ { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
+
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
+ { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = NumTraits<LhsScalar>::MulCost,
+ PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the min of two scalars
+ *
+ * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
+ */
+template<typename LhsScalar,typename RhsScalar, int NaNPropagation>
+struct scalar_min_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_min_op>::ReturnType result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const {
+ return internal::pmin<NaNPropagation>(a, b);
+ }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
+ {
+ return internal::pmin<NaNPropagation>(a,b);
+ }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const
+ {
+ return internal::predux_min<NaNPropagation>(a);
+ }
+};
+
+template<typename LhsScalar,typename RhsScalar, int NaNPropagation>
+struct functor_traits<scalar_min_op<LhsScalar,RhsScalar, NaNPropagation> > {
+ enum {
+ Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
+ PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMin
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the max of two scalars
+ *
+ * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
+ */
+template<typename LhsScalar,typename RhsScalar, int NaNPropagation>
+struct scalar_max_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_max_op>::ReturnType result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const {
+ return internal::pmax<NaNPropagation>(a,b);
+ }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
+ {
+ return internal::pmax<NaNPropagation>(a,b);
+ }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const
+ {
+ return internal::predux_max<NaNPropagation>(a);
+ }
+};
+
+template<typename LhsScalar,typename RhsScalar, int NaNPropagation>
+struct functor_traits<scalar_max_op<LhsScalar,RhsScalar, NaNPropagation> > {
+ enum {
+ Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
+ PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMax
+ };
+};
+
+/** \internal
+ * \brief Template functors for comparison of two scalars
+ * \todo Implement packet-comparisons
+ */
+template<typename LhsScalar, typename RhsScalar, ComparisonName cmp> struct scalar_cmp_op;
+
+template<typename LhsScalar, typename RhsScalar, ComparisonName cmp>
+struct functor_traits<scalar_cmp_op<LhsScalar,RhsScalar, cmp> > {
+ enum {
+ Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
+ PacketAccess = false
+ };
+};
+
+template<ComparisonName Cmp, typename LhsScalar, typename RhsScalar>
+struct result_of<scalar_cmp_op<LhsScalar, RhsScalar, Cmp>(LhsScalar,RhsScalar)> {
+ typedef bool type;
+};
+
+
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_EQ> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a==b;}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_LT> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a<b;}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_LE> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a<=b;}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_GT> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>b;}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_GE> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>=b;}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_UNORD> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return !(a<=b || b<=a);}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_NEQ> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a!=b;}
+};
+
+/** \internal
+ * \brief Template functor to compute the hypot of two \b positive \b and \b real scalars
+ *
+ * \sa MatrixBase::stableNorm(), class Redux
+ */
+template<typename Scalar>
+struct scalar_hypot_op<Scalar,Scalar> : binary_op_base<Scalar,Scalar>
+{
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar &x, const Scalar &y) const
+ {
+ // This functor is used by hypotNorm only for which it is faster to first apply abs
+ // on all coefficients prior to reduction through hypot.
+ // This way we avoid calling abs on positive and real entries, and this also permits
+ // to seamlessly handle complexes. Otherwise we would have to handle both real and complexes
+ // through the same functor...
+ return internal::positive_real_hypot(x,y);
+ }
+};
+template<typename Scalar>
+struct functor_traits<scalar_hypot_op<Scalar,Scalar> > {
+ enum
+ {
+ Cost = 3 * NumTraits<Scalar>::AddCost +
+ 2 * NumTraits<Scalar>::MulCost +
+ 2 * scalar_div_cost<Scalar,false>::value,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the pow of two scalars
+ * See the specification of pow in https://en.cppreference.com/w/cpp/numeric/math/pow
+ */
+template<typename Scalar, typename Exponent>
+struct scalar_pow_op : binary_op_base<Scalar,Exponent>
+{
+ typedef typename ScalarBinaryOpTraits<Scalar,Exponent,scalar_pow_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_pow_op)
+#else
+ scalar_pow_op() {
+ typedef Scalar LhsScalar;
+ typedef Exponent RhsScalar;
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC
+ inline result_type operator() (const Scalar& a, const Exponent& b) const { return numext::pow(a, b); }
+
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ {
+ return generic_pow(a,b);
+ }
+};
+
+template<typename Scalar, typename Exponent>
+struct functor_traits<scalar_pow_op<Scalar,Exponent> > {
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = (!NumTraits<Scalar>::IsComplex && !NumTraits<Scalar>::IsInteger &&
+ packet_traits<Scalar>::HasExp && packet_traits<Scalar>::HasLog &&
+ packet_traits<Scalar>::HasRound && packet_traits<Scalar>::HasCmp &&
+ // Temporarly disable packet access for half/bfloat16 until
+ // accuracy is improved.
+ !is_same<Scalar, half>::value && !is_same<Scalar, bfloat16>::value
+ )
+ };
+};
+
+//---------- non associative binary functors ----------
+
+/** \internal
+ * \brief Template functor to compute the difference of two scalars
+ *
+ * \sa class CwiseBinaryOp, MatrixBase::operator-
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_difference_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_difference_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
+#else
+ scalar_difference_op() {
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a - b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::psub(a,b); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_difference_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = (int(NumTraits<LhsScalar>::AddCost) + int(NumTraits<RhsScalar>::AddCost)) / 2,
+ PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasSub && packet_traits<RhsScalar>::HasSub
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the quotient of two scalars
+ *
+ * \sa class CwiseBinaryOp, Cwise::operator/()
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_quotient_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_quotient_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
+#else
+ scalar_quotient_op() {
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::pdiv(a,b); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_quotient_op<LhsScalar,RhsScalar> > {
+ typedef typename scalar_quotient_op<LhsScalar,RhsScalar>::result_type result_type;
+ enum {
+ PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasDiv && packet_traits<RhsScalar>::HasDiv,
+ Cost = scalar_div_cost<result_type,PacketAccess>::value
+ };
+};
+
+
+
+/** \internal
+ * \brief Template functor to compute the and of two booleans
+ *
+ * \sa class CwiseBinaryOp, ArrayBase::operator&&
+ */
+struct scalar_boolean_and_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::pand(a,b); }
+};
+template<> struct functor_traits<scalar_boolean_and_op> {
+ enum {
+ Cost = NumTraits<bool>::AddCost,
+ PacketAccess = true
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the or of two booleans
+ *
+ * \sa class CwiseBinaryOp, ArrayBase::operator||
+ */
+struct scalar_boolean_or_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::por(a,b); }
+};
+template<> struct functor_traits<scalar_boolean_or_op> {
+ enum {
+ Cost = NumTraits<bool>::AddCost,
+ PacketAccess = true
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the xor of two booleans
+ *
+ * \sa class CwiseBinaryOp, ArrayBase::operator^
+ */
+struct scalar_boolean_xor_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_xor_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a ^ b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::pxor(a,b); }
+};
+template<> struct functor_traits<scalar_boolean_xor_op> {
+ enum {
+ Cost = NumTraits<bool>::AddCost,
+ PacketAccess = true
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the absolute difference of two scalars
+ *
+ * \sa class CwiseBinaryOp, MatrixBase::absolute_difference
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_absolute_difference_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_absolute_difference_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_absolute_difference_op)
+#else
+ scalar_absolute_difference_op() {
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
+ { return numext::absdiff(a,b); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::pabsdiff(a,b); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_absolute_difference_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
+ PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasAbsDiff
+ };
+};
+
+
+
+//---------- binary functors bound to a constant, thus appearing as a unary functor ----------
+
+// The following two classes permits to turn any binary functor into a unary one with one argument bound to a constant value.
+// They are analogues to std::binder1st/binder2nd but with the following differences:
+// - they are compatible with packetOp
+// - they are portable across C++ versions (the std::binder* are deprecated in C++11)
+template<typename BinaryOp> struct bind1st_op : BinaryOp {
+
+ typedef typename BinaryOp::first_argument_type first_argument_type;
+ typedef typename BinaryOp::second_argument_type second_argument_type;
+ typedef typename BinaryOp::result_type result_type;
+
+ EIGEN_DEVICE_FUNC explicit bind1st_op(const first_argument_type &val) : m_value(val) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const second_argument_type& b) const { return BinaryOp::operator()(m_value,b); }
+
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& b) const
+ { return BinaryOp::packetOp(internal::pset1<Packet>(m_value), b); }
+
+ first_argument_type m_value;
+};
+template<typename BinaryOp> struct functor_traits<bind1st_op<BinaryOp> > : functor_traits<BinaryOp> {};
+
+
+template<typename BinaryOp> struct bind2nd_op : BinaryOp {
+
+ typedef typename BinaryOp::first_argument_type first_argument_type;
+ typedef typename BinaryOp::second_argument_type second_argument_type;
+ typedef typename BinaryOp::result_type result_type;
+
+ EIGEN_DEVICE_FUNC explicit bind2nd_op(const second_argument_type &val) : m_value(val) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const first_argument_type& a) const { return BinaryOp::operator()(a,m_value); }
+
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return BinaryOp::packetOp(a,internal::pset1<Packet>(m_value)); }
+
+ second_argument_type m_value;
+};
+template<typename BinaryOp> struct functor_traits<bind2nd_op<BinaryOp> > : functor_traits<BinaryOp> {};
+
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_BINARY_FUNCTORS_H
diff --git a/Eigen/src/Core/functors/NullaryFunctors.h b/Eigen/src/Core/functors/NullaryFunctors.h
new file mode 100644
index 0000000..192f225
--- /dev/null
+++ b/Eigen/src/Core/functors/NullaryFunctors.h
@@ -0,0 +1,189 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_NULLARY_FUNCTORS_H
+#define EIGEN_NULLARY_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename Scalar>
+struct scalar_constant_op {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() () const { return m_other; }
+ template<typename PacketType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { return internal::pset1<PacketType>(m_other); }
+ const Scalar m_other;
+};
+template<typename Scalar>
+struct functor_traits<scalar_constant_op<Scalar> >
+{ enum { Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */,
+ PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
+
+template<typename Scalar> struct scalar_identity_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
+ template<typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType row, IndexType col) const { return row==col ? Scalar(1) : Scalar(0); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_identity_op<Scalar> >
+{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
+
+template <typename Scalar, bool IsInteger> struct linspaced_op_impl;
+
+template <typename Scalar>
+struct linspaced_op_impl<Scalar,/*IsInteger*/false>
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
+ m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : Scalar((high-low)/RealScalar(num_steps-1))),
+ m_flip(numext::abs(high)<numext::abs(low))
+ {}
+
+ template<typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const {
+ if(m_flip)
+ return (i==0)? m_low : Scalar(m_high - RealScalar(m_size1-i)*m_step);
+ else
+ return (i==m_size1)? m_high : Scalar(m_low + RealScalar(i)*m_step);
+ }
+
+ template<typename Packet, typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const
+ {
+ // Principle:
+ // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
+ if(m_flip)
+ {
+ Packet pi = plset<Packet>(Scalar(i-m_size1));
+ Packet res = padd(pset1<Packet>(m_high), pmul(pset1<Packet>(m_step), pi));
+ if (EIGEN_PREDICT_TRUE(i != 0)) return res;
+ Packet mask = pcmp_lt(pset1<Packet>(0), plset<Packet>(0));
+ return pselect<Packet>(mask, res, pset1<Packet>(m_low));
+ }
+ else
+ {
+ Packet pi = plset<Packet>(Scalar(i));
+ Packet res = padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi));
+ if(EIGEN_PREDICT_TRUE(i != m_size1-unpacket_traits<Packet>::size+1)) return res;
+ Packet mask = pcmp_lt(plset<Packet>(0), pset1<Packet>(unpacket_traits<Packet>::size-1));
+ return pselect<Packet>(mask, res, pset1<Packet>(m_high));
+ }
+ }
+
+ const Scalar m_low;
+ const Scalar m_high;
+ const Index m_size1;
+ const Scalar m_step;
+ const bool m_flip;
+};
+
+template <typename Scalar>
+struct linspaced_op_impl<Scalar,/*IsInteger*/true>
+{
+ EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
+ m_low(low),
+ m_multiplier((high-low)/convert_index<Scalar>(num_steps<=1 ? 1 : num_steps-1)),
+ m_divisor(convert_index<Scalar>((high>=low?num_steps:-num_steps)+(high-low))/((numext::abs(high-low)+1)==0?1:(numext::abs(high-low)+1))),
+ m_use_divisor(num_steps>1 && (numext::abs(high-low)+1)<num_steps)
+ {}
+
+ template<typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const Scalar operator() (IndexType i) const
+ {
+ if(m_use_divisor) return m_low + convert_index<Scalar>(i)/m_divisor;
+ else return m_low + convert_index<Scalar>(i)*m_multiplier;
+ }
+
+ const Scalar m_low;
+ const Scalar m_multiplier;
+ const Scalar m_divisor;
+ const bool m_use_divisor;
+};
+
+// ----- Linspace functor ----------------------------------------------------------------
+
+// Forward declaration (we default to random access which does not really give
+// us a speed gain when using packet access but it allows to use the functor in
+// nested expressions).
+template <typename Scalar> struct linspaced_op;
+template <typename Scalar> struct functor_traits< linspaced_op<Scalar> >
+{
+ enum
+ {
+ Cost = 1,
+ PacketAccess = (!NumTraits<Scalar>::IsInteger) && packet_traits<Scalar>::HasSetLinear && packet_traits<Scalar>::HasBlend,
+ /*&& ((!NumTraits<Scalar>::IsInteger) || packet_traits<Scalar>::HasDiv),*/ // <- vectorization for integer is currently disabled
+ IsRepeatable = true
+ };
+};
+template <typename Scalar> struct linspaced_op
+{
+ EIGEN_DEVICE_FUNC linspaced_op(const Scalar& low, const Scalar& high, Index num_steps)
+ : impl((num_steps==1 ? high : low),high,num_steps)
+ {}
+
+ template<typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return impl(i); }
+
+ template<typename Packet,typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.template packetOp<Packet>(i); }
+
+ // This proxy object handles the actual required temporaries and the different
+ // implementations (integer vs. floating point).
+ const linspaced_op_impl<Scalar,NumTraits<Scalar>::IsInteger> impl;
+};
+
+// Linear access is automatically determined from the operator() prototypes available for the given functor.
+// If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently
+// and linear access is not possible. In all other cases, linear access is enabled.
+// Users should not have to deal with this structure.
+template<typename Functor> struct functor_has_linear_access { enum { ret = !has_binary_operator<Functor>::value }; };
+
+// For unreliable compilers, let's specialize the has_*ary_operator
+// helpers so that at least built-in nullary functors work fine.
+#if !( (EIGEN_COMP_MSVC>1600) || (EIGEN_GNUC_AT_LEAST(4,8)) || (EIGEN_COMP_ICC>=1600))
+template<typename Scalar,typename IndexType>
+struct has_nullary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 1}; };
+template<typename Scalar,typename IndexType>
+struct has_unary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
+template<typename Scalar,typename IndexType>
+struct has_binary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
+
+template<typename Scalar,typename IndexType>
+struct has_nullary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
+template<typename Scalar,typename IndexType>
+struct has_unary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
+template<typename Scalar,typename IndexType>
+struct has_binary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 1}; };
+
+template<typename Scalar,typename IndexType>
+struct has_nullary_operator<linspaced_op<Scalar>,IndexType> { enum { value = 0}; };
+template<typename Scalar,typename IndexType>
+struct has_unary_operator<linspaced_op<Scalar>,IndexType> { enum { value = 1}; };
+template<typename Scalar,typename IndexType>
+struct has_binary_operator<linspaced_op<Scalar>,IndexType> { enum { value = 0}; };
+
+template<typename Scalar,typename IndexType>
+struct has_nullary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 1}; };
+template<typename Scalar,typename IndexType>
+struct has_unary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
+template<typename Scalar,typename IndexType>
+struct has_binary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
+#endif
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_NULLARY_FUNCTORS_H
diff --git a/Eigen/src/Core/functors/StlFunctors.h b/Eigen/src/Core/functors/StlFunctors.h
new file mode 100644
index 0000000..4570c9b
--- /dev/null
+++ b/Eigen/src/Core/functors/StlFunctors.h
@@ -0,0 +1,166 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_STL_FUNCTORS_H
+#define EIGEN_STL_FUNCTORS_H
+
+namespace Eigen {
+
+// Portable replacements for certain functors.
+namespace numext {
+
+template<typename T = void>
+struct equal_to {
+ typedef bool result_type;
+ EIGEN_DEVICE_FUNC bool operator()(const T& lhs, const T& rhs) const {
+ return lhs == rhs;
+ }
+};
+
+template<typename T = void>
+struct not_equal_to {
+ typedef bool result_type;
+ EIGEN_DEVICE_FUNC bool operator()(const T& lhs, const T& rhs) const {
+ return lhs != rhs;
+ }
+};
+
+}
+
+
+namespace internal {
+
+// default functor traits for STL functors:
+
+template<typename T>
+struct functor_traits<std::multiplies<T> >
+{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::divides<T> >
+{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::plus<T> >
+{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::minus<T> >
+{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::negate<T> >
+{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::logical_or<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::logical_and<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::logical_not<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::greater<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::less<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::greater_equal<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::less_equal<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::equal_to<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<numext::equal_to<T> >
+ : functor_traits<std::equal_to<T> > {};
+
+template<typename T>
+struct functor_traits<std::not_equal_to<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<numext::not_equal_to<T> >
+ : functor_traits<std::not_equal_to<T> > {};
+
+#if (EIGEN_COMP_CXXVER < 11)
+// std::binder* are deprecated since c++11 and will be removed in c++17
+template<typename T>
+struct functor_traits<std::binder2nd<T> >
+{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::binder1st<T> >
+{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
+#endif
+
+#if (EIGEN_COMP_CXXVER < 17)
+// std::unary_negate is deprecated since c++17 and will be removed in c++20
+template<typename T>
+struct functor_traits<std::unary_negate<T> >
+{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
+
+// std::binary_negate is deprecated since c++17 and will be removed in c++20
+template<typename T>
+struct functor_traits<std::binary_negate<T> >
+{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
+#endif
+
+#ifdef EIGEN_STDEXT_SUPPORT
+
+template<typename T0,typename T1>
+struct functor_traits<std::project1st<T0,T1> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+template<typename T0,typename T1>
+struct functor_traits<std::project2nd<T0,T1> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+template<typename T0,typename T1>
+struct functor_traits<std::select2nd<std::pair<T0,T1> > >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+template<typename T0,typename T1>
+struct functor_traits<std::select1st<std::pair<T0,T1> > >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+template<typename T0,typename T1>
+struct functor_traits<std::unary_compose<T0,T1> >
+{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
+
+template<typename T0,typename T1,typename T2>
+struct functor_traits<std::binary_compose<T0,T1,T2> >
+{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
+
+#endif // EIGEN_STDEXT_SUPPORT
+
+// allow to add new functors and specializations of functor_traits from outside Eigen.
+// this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
+#ifdef EIGEN_FUNCTORS_PLUGIN
+#include EIGEN_FUNCTORS_PLUGIN
+#endif
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_STL_FUNCTORS_H
diff --git a/Eigen/src/Core/functors/TernaryFunctors.h b/Eigen/src/Core/functors/TernaryFunctors.h
new file mode 100644
index 0000000..b254e96
--- /dev/null
+++ b/Eigen/src/Core/functors/TernaryFunctors.h
@@ -0,0 +1,25 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_TERNARY_FUNCTORS_H
+#define EIGEN_TERNARY_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+//---------- associative ternary functors ----------
+
+
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_TERNARY_FUNCTORS_H
diff --git a/Eigen/src/Core/functors/UnaryFunctors.h b/Eigen/src/Core/functors/UnaryFunctors.h
new file mode 100644
index 0000000..16136d1
--- /dev/null
+++ b/Eigen/src/Core/functors/UnaryFunctors.h
@@ -0,0 +1,1131 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_UNARY_FUNCTORS_H
+#define EIGEN_UNARY_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal
+ * \brief Template functor to compute the opposite of a scalar
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::operator-
+ */
+template<typename Scalar> struct scalar_opposite_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return internal::pnegate(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_opposite_op<Scalar> >
+{ enum {
+ Cost = NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasNegate };
+};
+
+/** \internal
+ * \brief Template functor to compute the absolute value of a scalar
+ *
+ * \sa class CwiseUnaryOp, Cwise::abs
+ */
+template<typename Scalar> struct scalar_abs_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs(a); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return internal::pabs(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_abs_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasAbs
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the score of a scalar, to chose a pivot
+ *
+ * \sa class CwiseUnaryOp
+ */
+template<typename Scalar> struct scalar_score_coeff_op : scalar_abs_op<Scalar>
+{
+ typedef void Score_is_abs;
+};
+template<typename Scalar>
+struct functor_traits<scalar_score_coeff_op<Scalar> > : functor_traits<scalar_abs_op<Scalar> > {};
+
+/* Avoid recomputing abs when we know the score and they are the same. Not a true Eigen functor. */
+template<typename Scalar, typename=void> struct abs_knowing_score
+{
+ EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ template<typename Score>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a, const Score&) const { return numext::abs(a); }
+};
+template<typename Scalar> struct abs_knowing_score<Scalar, typename scalar_score_coeff_op<Scalar>::Score_is_abs>
+{
+ EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ template<typename Scal>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scal&, const result_type& a) const { return a; }
+};
+
+/** \internal
+ * \brief Template functor to compute the squared absolute value of a scalar
+ *
+ * \sa class CwiseUnaryOp, Cwise::abs2
+ */
+template<typename Scalar> struct scalar_abs2_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return internal::pmul(a,a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_abs2_op<Scalar> >
+{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
+
+/** \internal
+ * \brief Template functor to compute the conjugate of a complex value
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::conjugate()
+ */
+template<typename Scalar> struct scalar_conjugate_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::conj(a); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_conjugate_op<Scalar> >
+{
+ enum {
+ Cost = 0,
+ // Yes the cost is zero even for complexes because in most cases for which
+ // the cost is used, conjugation turns to be a no-op. Some examples:
+ // cost(a*conj(b)) == cost(a*b)
+ // cost(a+conj(b)) == cost(a+b)
+ // <etc.
+ // If we don't set it to zero, then:
+ // A.conjugate().lazyProduct(B.conjugate())
+ // will bake its operands. We definitely don't want that!
+ PacketAccess = packet_traits<Scalar>::HasConj
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the phase angle of a complex
+ *
+ * \sa class CwiseUnaryOp, Cwise::arg
+ */
+template<typename Scalar> struct scalar_arg_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_arg_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::arg(a); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return internal::parg(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_arg_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::IsComplex ? 5 * NumTraits<Scalar>::MulCost : NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasArg
+ };
+};
+/** \internal
+ * \brief Template functor to cast a scalar to another type
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::cast()
+ */
+template<typename Scalar, typename NewType>
+struct scalar_cast_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
+ typedef NewType result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
+};
+template<typename Scalar, typename NewType>
+struct functor_traits<scalar_cast_op<Scalar,NewType> >
+{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
+
+/** \internal
+ * \brief Template functor to arithmetically shift a scalar right by a number of bits
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::shift_right()
+ */
+template<typename Scalar, int N>
+struct scalar_shift_right_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_shift_right_op)
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const
+ { return a >> N; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return internal::parithmetic_shift_right<N>(a); }
+};
+template<typename Scalar, int N>
+struct functor_traits<scalar_shift_right_op<Scalar,N> >
+{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasShift }; };
+
+/** \internal
+ * \brief Template functor to logically shift a scalar left by a number of bits
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::shift_left()
+ */
+template<typename Scalar, int N>
+struct scalar_shift_left_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_shift_left_op)
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const
+ { return a << N; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return internal::plogical_shift_left<N>(a); }
+};
+template<typename Scalar, int N>
+struct functor_traits<scalar_shift_left_op<Scalar,N> >
+{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasShift }; };
+
+/** \internal
+ * \brief Template functor to extract the real part of a complex
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::real()
+ */
+template<typename Scalar>
+struct scalar_real_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_real_op<Scalar> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+/** \internal
+ * \brief Template functor to extract the imaginary part of a complex
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::imag()
+ */
+template<typename Scalar>
+struct scalar_imag_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_imag_op<Scalar> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+/** \internal
+ * \brief Template functor to extract the real part of a complex as a reference
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::real()
+ */
+template<typename Scalar>
+struct scalar_real_ref_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_real_ref_op<Scalar> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+/** \internal
+ * \brief Template functor to extract the imaginary part of a complex as a reference
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::imag()
+ */
+template<typename Scalar>
+struct scalar_imag_ref_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_imag_ref_op<Scalar> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+/** \internal
+ *
+ * \brief Template functor to compute the exponential of a scalar
+ *
+ * \sa class CwiseUnaryOp, Cwise::exp()
+ */
+template<typename Scalar> struct scalar_exp_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::exp(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
+};
+template <typename Scalar>
+struct functor_traits<scalar_exp_op<Scalar> > {
+ enum {
+ PacketAccess = packet_traits<Scalar>::HasExp,
+ // The following numbers are based on the AVX implementation.
+#ifdef EIGEN_VECTORIZE_FMA
+ // Haswell can issue 2 add/mul/madd per cycle.
+ Cost =
+ (sizeof(Scalar) == 4
+ // float: 8 pmadd, 4 pmul, 2 padd/psub, 6 other
+ ? (8 * NumTraits<Scalar>::AddCost + 6 * NumTraits<Scalar>::MulCost)
+ // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other
+ : (14 * NumTraits<Scalar>::AddCost +
+ 6 * NumTraits<Scalar>::MulCost +
+ scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value))
+#else
+ Cost =
+ (sizeof(Scalar) == 4
+ // float: 7 pmadd, 6 pmul, 4 padd/psub, 10 other
+ ? (21 * NumTraits<Scalar>::AddCost + 13 * NumTraits<Scalar>::MulCost)
+ // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other
+ : (23 * NumTraits<Scalar>::AddCost +
+ 12 * NumTraits<Scalar>::MulCost +
+ scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value))
+#endif
+ };
+};
+
+/** \internal
+ *
+ * \brief Template functor to compute the exponential of a scalar - 1.
+ *
+ * \sa class CwiseUnaryOp, ArrayBase::expm1()
+ */
+template<typename Scalar> struct scalar_expm1_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_expm1_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::expm1(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexpm1(a); }
+};
+template <typename Scalar>
+struct functor_traits<scalar_expm1_op<Scalar> > {
+ enum {
+ PacketAccess = packet_traits<Scalar>::HasExpm1,
+ Cost = functor_traits<scalar_exp_op<Scalar> >::Cost // TODO measure cost of expm1
+ };
+};
+
+/** \internal
+ *
+ * \brief Template functor to compute the logarithm of a scalar
+ *
+ * \sa class CwiseUnaryOp, ArrayBase::log()
+ */
+template<typename Scalar> struct scalar_log_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
+};
+template <typename Scalar>
+struct functor_traits<scalar_log_op<Scalar> > {
+ enum {
+ PacketAccess = packet_traits<Scalar>::HasLog,
+ Cost =
+ (PacketAccess
+ // The following numbers are based on the AVX implementation.
+#ifdef EIGEN_VECTORIZE_FMA
+ // 8 pmadd, 6 pmul, 8 padd/psub, 16 other, can issue 2 add/mul/madd per cycle.
+ ? (20 * NumTraits<Scalar>::AddCost + 7 * NumTraits<Scalar>::MulCost)
+#else
+ // 8 pmadd, 6 pmul, 8 padd/psub, 20 other
+ ? (36 * NumTraits<Scalar>::AddCost + 14 * NumTraits<Scalar>::MulCost)
+#endif
+ // Measured cost of std::log.
+ : sizeof(Scalar)==4 ? 40 : 85)
+ };
+};
+
+/** \internal
+ *
+ * \brief Template functor to compute the logarithm of 1 plus a scalar value
+ *
+ * \sa class CwiseUnaryOp, ArrayBase::log1p()
+ */
+template<typename Scalar> struct scalar_log1p_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_log1p_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log1p(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog1p(a); }
+};
+template <typename Scalar>
+struct functor_traits<scalar_log1p_op<Scalar> > {
+ enum {
+ PacketAccess = packet_traits<Scalar>::HasLog1p,
+ Cost = functor_traits<scalar_log_op<Scalar> >::Cost // TODO measure cost of log1p
+ };
+};
+
+/** \internal
+ *
+ * \brief Template functor to compute the base-10 logarithm of a scalar
+ *
+ * \sa class CwiseUnaryOp, Cwise::log10()
+ */
+template<typename Scalar> struct scalar_log10_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_log10_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { EIGEN_USING_STD(log10) return log10(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog10(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_log10_op<Scalar> >
+{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog10 }; };
+
+/** \internal
+ *
+ * \brief Template functor to compute the base-2 logarithm of a scalar
+ *
+ * \sa class CwiseUnaryOp, Cwise::log2()
+ */
+template<typename Scalar> struct scalar_log2_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_log2_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(EIGEN_LOG2E) * numext::log(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog2(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_log2_op<Scalar> >
+{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
+
+/** \internal
+ * \brief Template functor to compute the square root of a scalar
+ * \sa class CwiseUnaryOp, Cwise::sqrt()
+ */
+template<typename Scalar> struct scalar_sqrt_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sqrt(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
+};
+template <typename Scalar>
+struct functor_traits<scalar_sqrt_op<Scalar> > {
+ enum {
+#if EIGEN_FAST_MATH
+ // The following numbers are based on the AVX implementation.
+ Cost = (sizeof(Scalar) == 8 ? 28
+ // 4 pmul, 1 pmadd, 3 other
+ : (3 * NumTraits<Scalar>::AddCost +
+ 5 * NumTraits<Scalar>::MulCost)),
+#else
+ // The following numbers are based on min VSQRT throughput on Haswell.
+ Cost = (sizeof(Scalar) == 8 ? 28 : 14),
+#endif
+ PacketAccess = packet_traits<Scalar>::HasSqrt
+ };
+};
+
+// Boolean specialization to eliminate -Wimplicit-conversion-floating-point-to-bool warnings.
+template<> struct scalar_sqrt_op<bool> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
+ EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline bool operator() (const bool& a) const { return a; }
+ template <typename Packet>
+ EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return a; }
+};
+template <>
+struct functor_traits<scalar_sqrt_op<bool> > {
+ enum { Cost = 1, PacketAccess = packet_traits<bool>::Vectorizable };
+};
+
+/** \internal
+ * \brief Template functor to compute the reciprocal square root of a scalar
+ * \sa class CwiseUnaryOp, Cwise::rsqrt()
+ */
+template<typename Scalar> struct scalar_rsqrt_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_rsqrt_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::rsqrt(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::prsqrt(a); }
+};
+
+template<typename Scalar>
+struct functor_traits<scalar_rsqrt_op<Scalar> >
+{ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasRsqrt
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the cosine of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::cos()
+ */
+template<typename Scalar> struct scalar_cos_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
+ EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return numext::cos(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_cos_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasCos
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the sine of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::sin()
+ */
+template<typename Scalar> struct scalar_sin_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sin(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_sin_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasSin
+ };
+};
+
+
+/** \internal
+ * \brief Template functor to compute the tan of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::tan()
+ */
+template<typename Scalar> struct scalar_tan_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::tan(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_tan_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasTan
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the arc cosine of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::acos()
+ */
+template<typename Scalar> struct scalar_acos_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::acos(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_acos_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasACos
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the arc sine of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::asin()
+ */
+template<typename Scalar> struct scalar_asin_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::asin(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_asin_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasASin
+ };
+};
+
+
+/** \internal
+ * \brief Template functor to compute the atan of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::atan()
+ */
+template<typename Scalar> struct scalar_atan_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_atan_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::atan(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::patan(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_atan_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasATan
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the tanh of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::tanh()
+ */
+template <typename Scalar>
+struct scalar_tanh_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_tanh_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::tanh(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { return ptanh(x); }
+};
+
+template <typename Scalar>
+struct functor_traits<scalar_tanh_op<Scalar> > {
+ enum {
+ PacketAccess = packet_traits<Scalar>::HasTanh,
+ Cost = ( (EIGEN_FAST_MATH && is_same<Scalar,float>::value)
+// The following numbers are based on the AVX implementation,
+#ifdef EIGEN_VECTORIZE_FMA
+ // Haswell can issue 2 add/mul/madd per cycle.
+ // 9 pmadd, 2 pmul, 1 div, 2 other
+ ? (2 * NumTraits<Scalar>::AddCost +
+ 6 * NumTraits<Scalar>::MulCost +
+ scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value)
+#else
+ ? (11 * NumTraits<Scalar>::AddCost +
+ 11 * NumTraits<Scalar>::MulCost +
+ scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value)
+#endif
+ // This number assumes a naive implementation of tanh
+ : (6 * NumTraits<Scalar>::AddCost +
+ 3 * NumTraits<Scalar>::MulCost +
+ 2 * scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value +
+ functor_traits<scalar_exp_op<Scalar> >::Cost))
+ };
+};
+
+#if EIGEN_HAS_CXX11_MATH
+/** \internal
+ * \brief Template functor to compute the atanh of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::atanh()
+ */
+template <typename Scalar>
+struct scalar_atanh_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_atanh_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::atanh(a); }
+};
+
+template <typename Scalar>
+struct functor_traits<scalar_atanh_op<Scalar> > {
+ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
+};
+#endif
+
+/** \internal
+ * \brief Template functor to compute the sinh of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::sinh()
+ */
+template<typename Scalar> struct scalar_sinh_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sinh_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sinh(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psinh(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_sinh_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasSinh
+ };
+};
+
+#if EIGEN_HAS_CXX11_MATH
+/** \internal
+ * \brief Template functor to compute the asinh of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::asinh()
+ */
+template <typename Scalar>
+struct scalar_asinh_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_asinh_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::asinh(a); }
+};
+
+template <typename Scalar>
+struct functor_traits<scalar_asinh_op<Scalar> > {
+ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
+};
+#endif
+
+/** \internal
+ * \brief Template functor to compute the cosh of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::cosh()
+ */
+template<typename Scalar> struct scalar_cosh_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cosh_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::cosh(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcosh(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_cosh_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasCosh
+ };
+};
+
+#if EIGEN_HAS_CXX11_MATH
+/** \internal
+ * \brief Template functor to compute the acosh of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::acosh()
+ */
+template <typename Scalar>
+struct scalar_acosh_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_acosh_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::acosh(a); }
+};
+
+template <typename Scalar>
+struct functor_traits<scalar_acosh_op<Scalar> > {
+ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
+};
+#endif
+
+/** \internal
+ * \brief Template functor to compute the inverse of a scalar
+ * \sa class CwiseUnaryOp, Cwise::inverse()
+ */
+template<typename Scalar>
+struct scalar_inverse_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
+ EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
+ { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
+};
+template <typename Scalar>
+struct functor_traits<scalar_inverse_op<Scalar> > {
+ enum {
+ PacketAccess = packet_traits<Scalar>::HasDiv,
+ Cost = scalar_div_cost<Scalar, PacketAccess>::value
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the square of a scalar
+ * \sa class CwiseUnaryOp, Cwise::square()
+ */
+template<typename Scalar>
+struct scalar_square_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
+ EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
+ { return internal::pmul(a,a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_square_op<Scalar> >
+{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
+
+// Boolean specialization to avoid -Wint-in-bool-context warnings on GCC.
+template<>
+struct scalar_square_op<bool> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
+ EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline bool operator() (const bool& a) const { return a; }
+ template<typename Packet>
+ EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
+ { return a; }
+};
+template<>
+struct functor_traits<scalar_square_op<bool> >
+{ enum { Cost = 0, PacketAccess = packet_traits<bool>::Vectorizable }; };
+
+/** \internal
+ * \brief Template functor to compute the cube of a scalar
+ * \sa class CwiseUnaryOp, Cwise::cube()
+ */
+template<typename Scalar>
+struct scalar_cube_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
+ EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a*a; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
+ { return internal::pmul(a,pmul(a,a)); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_cube_op<Scalar> >
+{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
+
+// Boolean specialization to avoid -Wint-in-bool-context warnings on GCC.
+template<>
+struct scalar_cube_op<bool> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
+ EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline bool operator() (const bool& a) const { return a; }
+ template<typename Packet>
+ EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
+ { return a; }
+};
+template<>
+struct functor_traits<scalar_cube_op<bool> >
+{ enum { Cost = 0, PacketAccess = packet_traits<bool>::Vectorizable }; };
+
+/** \internal
+ * \brief Template functor to compute the rounded value of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::round()
+ */
+template<typename Scalar> struct scalar_round_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_round_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::round(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pround(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_round_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasRound
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the floor of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::floor()
+ */
+template<typename Scalar> struct scalar_floor_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_floor_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::floor(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pfloor(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_floor_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasFloor
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the rounded (with current rounding mode) value of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::rint()
+ */
+template<typename Scalar> struct scalar_rint_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_rint_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::rint(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::print(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_rint_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasRint
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the ceil of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::ceil()
+ */
+template<typename Scalar> struct scalar_ceil_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_ceil_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::ceil(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pceil(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_ceil_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasCeil
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute whether a scalar is NaN
+ * \sa class CwiseUnaryOp, ArrayBase::isnan()
+ */
+template<typename Scalar> struct scalar_isnan_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_isnan_op)
+ typedef bool result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const {
+#if defined(SYCL_DEVICE_ONLY)
+ return numext::isnan(a);
+#else
+ return (numext::isnan)(a);
+#endif
+ }
+};
+template<typename Scalar>
+struct functor_traits<scalar_isnan_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to check whether a scalar is +/-inf
+ * \sa class CwiseUnaryOp, ArrayBase::isinf()
+ */
+template<typename Scalar> struct scalar_isinf_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_isinf_op)
+ typedef bool result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const {
+#if defined(SYCL_DEVICE_ONLY)
+ return numext::isinf(a);
+#else
+ return (numext::isinf)(a);
+#endif
+ }
+};
+template<typename Scalar>
+struct functor_traits<scalar_isinf_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to check whether a scalar has a finite value
+ * \sa class CwiseUnaryOp, ArrayBase::isfinite()
+ */
+template<typename Scalar> struct scalar_isfinite_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_isfinite_op)
+ typedef bool result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const {
+#if defined(SYCL_DEVICE_ONLY)
+ return numext::isfinite(a);
+#else
+ return (numext::isfinite)(a);
+#endif
+ }
+};
+template<typename Scalar>
+struct functor_traits<scalar_isfinite_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the logical not of a boolean
+ *
+ * \sa class CwiseUnaryOp, ArrayBase::operator!
+ */
+template<typename Scalar> struct scalar_boolean_not_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_not_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a) const { return !a; }
+};
+template<typename Scalar>
+struct functor_traits<scalar_boolean_not_op<Scalar> > {
+ enum {
+ Cost = NumTraits<bool>::AddCost,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the signum of a scalar
+ * \sa class CwiseUnaryOp, Cwise::sign()
+ */
+template<typename Scalar,bool is_complex=(NumTraits<Scalar>::IsComplex!=0), bool is_integer=(NumTraits<Scalar>::IsInteger!=0) > struct scalar_sign_op;
+template<typename Scalar>
+struct scalar_sign_op<Scalar, false, true> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
+ {
+ return Scalar( (a>Scalar(0)) - (a<Scalar(0)) );
+ }
+ //TODO
+ //template <typename Packet>
+ //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
+};
+
+template<typename Scalar>
+struct scalar_sign_op<Scalar, false, false> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
+ {
+ return (numext::isnan)(a) ? a : Scalar( (a>Scalar(0)) - (a<Scalar(0)) );
+ }
+ //TODO
+ //template <typename Packet>
+ //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
+};
+
+template<typename Scalar, bool is_integer>
+struct scalar_sign_op<Scalar,true, is_integer> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
+ {
+ typedef typename NumTraits<Scalar>::Real real_type;
+ real_type aa = numext::abs(a);
+ if (aa==real_type(0))
+ return Scalar(0);
+ aa = real_type(1)/aa;
+ return Scalar(a.real()*aa, a.imag()*aa );
+ }
+ //TODO
+ //template <typename Packet>
+ //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_sign_op<Scalar> >
+{ enum {
+ Cost =
+ NumTraits<Scalar>::IsComplex
+ ? ( 8*NumTraits<Scalar>::MulCost ) // roughly
+ : ( 3*NumTraits<Scalar>::AddCost),
+ PacketAccess = packet_traits<Scalar>::HasSign
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the logistic function of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::logistic()
+ */
+template <typename T>
+struct scalar_logistic_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_logistic_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const {
+ return packetOp(x);
+ }
+
+ template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Packet packetOp(const Packet& x) const {
+ const Packet one = pset1<Packet>(T(1));
+ return pdiv(one, padd(one, pexp(pnegate(x))));
+ }
+};
+
+#ifndef EIGEN_GPU_COMPILE_PHASE
+/** \internal
+ * \brief Template specialization of the logistic function for float.
+ *
+ * Uses just a 9/10-degree rational interpolant which
+ * interpolates 1/(1+exp(-x)) - 0.5 up to a couple of ulps in the range
+ * [-9, 18]. Below -9 we use the more accurate approximation
+ * 1/(1+exp(-x)) ~= exp(x), and above 18 the logistic function is 1 withing
+ * one ulp. The shifted logistic is interpolated because it was easier to
+ * make the fit converge.
+ *
+ */
+template <>
+struct scalar_logistic_op<float> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_logistic_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float operator()(const float& x) const {
+ return packetOp(x);
+ }
+
+ template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Packet packetOp(const Packet& _x) const {
+ const Packet cutoff_lower = pset1<Packet>(-9.f);
+ const Packet lt_mask = pcmp_lt<Packet>(_x, cutoff_lower);
+ const bool any_small = predux_any(lt_mask);
+
+ // The upper cut-off is the smallest x for which the rational approximation evaluates to 1.
+ // Choosing this value saves us a few instructions clamping the results at the end.
+#ifdef EIGEN_VECTORIZE_FMA
+ const Packet cutoff_upper = pset1<Packet>(15.7243833541870117f);
+#else
+ const Packet cutoff_upper = pset1<Packet>(15.6437711715698242f);
+#endif
+ const Packet x = pmin(_x, cutoff_upper);
+
+ // The monomial coefficients of the numerator polynomial (odd).
+ const Packet alpha_1 = pset1<Packet>(2.48287947061529e-01f);
+ const Packet alpha_3 = pset1<Packet>(8.51377133304701e-03f);
+ const Packet alpha_5 = pset1<Packet>(6.08574864600143e-05f);
+ const Packet alpha_7 = pset1<Packet>(1.15627324459942e-07f);
+ const Packet alpha_9 = pset1<Packet>(4.37031012579801e-11f);
+
+ // The monomial coefficients of the denominator polynomial (even).
+ const Packet beta_0 = pset1<Packet>(9.93151921023180e-01f);
+ const Packet beta_2 = pset1<Packet>(1.16817656904453e-01f);
+ const Packet beta_4 = pset1<Packet>(1.70198817374094e-03f);
+ const Packet beta_6 = pset1<Packet>(6.29106785017040e-06f);
+ const Packet beta_8 = pset1<Packet>(5.76102136993427e-09f);
+ const Packet beta_10 = pset1<Packet>(6.10247389755681e-13f);
+
+ // Since the polynomials are odd/even, we need x^2.
+ const Packet x2 = pmul(x, x);
+
+ // Evaluate the numerator polynomial p.
+ Packet p = pmadd(x2, alpha_9, alpha_7);
+ p = pmadd(x2, p, alpha_5);
+ p = pmadd(x2, p, alpha_3);
+ p = pmadd(x2, p, alpha_1);
+ p = pmul(x, p);
+
+ // Evaluate the denominator polynomial q.
+ Packet q = pmadd(x2, beta_10, beta_8);
+ q = pmadd(x2, q, beta_6);
+ q = pmadd(x2, q, beta_4);
+ q = pmadd(x2, q, beta_2);
+ q = pmadd(x2, q, beta_0);
+ // Divide the numerator by the denominator and shift it up.
+ const Packet logistic = padd(pdiv(p, q), pset1<Packet>(0.5f));
+ if (EIGEN_PREDICT_FALSE(any_small)) {
+ const Packet exponential = pexp(_x);
+ return pselect(lt_mask, exponential, logistic);
+ } else {
+ return logistic;
+ }
+ }
+};
+#endif // #ifndef EIGEN_GPU_COMPILE_PHASE
+
+template <typename T>
+struct functor_traits<scalar_logistic_op<T> > {
+ enum {
+ // The cost estimate for float here here is for the common(?) case where
+ // all arguments are greater than -9.
+ Cost = scalar_div_cost<T, packet_traits<T>::HasDiv>::value +
+ (internal::is_same<T, float>::value
+ ? NumTraits<T>::AddCost * 15 + NumTraits<T>::MulCost * 11
+ : NumTraits<T>::AddCost * 2 +
+ functor_traits<scalar_exp_op<T> >::Cost),
+ PacketAccess =
+ packet_traits<T>::HasAdd && packet_traits<T>::HasDiv &&
+ (internal::is_same<T, float>::value
+ ? packet_traits<T>::HasMul && packet_traits<T>::HasMax &&
+ packet_traits<T>::HasMin
+ : packet_traits<T>::HasNegate && packet_traits<T>::HasExp)
+ };
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_FUNCTORS_H