diff options
Diffstat (limited to 'glm-master/test/core/core_func_integer.cpp')
-rw-r--r-- | glm-master/test/core/core_func_integer.cpp | 1556 |
1 files changed, 1556 insertions, 0 deletions
diff --git a/glm-master/test/core/core_func_integer.cpp b/glm-master/test/core/core_func_integer.cpp new file mode 100644 index 0000000..95d650c --- /dev/null +++ b/glm-master/test/core/core_func_integer.cpp @@ -0,0 +1,1556 @@ +#include <glm/integer.hpp> +#include <glm/vector_relational.hpp> +#include <glm/ext/vector_int1.hpp> +#include <glm/ext/vector_int2.hpp> +#include <glm/ext/vector_int3.hpp> +#include <glm/ext/vector_int4.hpp> +#include <glm/ext/vector_uint1.hpp> +#include <glm/ext/vector_uint2.hpp> +#include <glm/ext/vector_uint3.hpp> +#include <glm/ext/vector_uint4.hpp> +#include <glm/ext/scalar_int_sized.hpp> +#include <glm/ext/scalar_uint_sized.hpp> +#include <vector> +#include <ctime> +#include <cstdio> + +enum result +{ + SUCCESS, + FAIL, + ASSERT, + STATIC_ASSERT +}; + +namespace bitfieldInsert +{ + template<typename genType> + struct type + { + genType Base; + genType Insert; + int Offset; + int Bits; + genType Return; + }; + + typedef type<glm::uint> typeU32; + + typeU32 const Data32[] = + { + {0x00000000, 0xffffffff, 0, 32, 0xffffffff}, + {0x00000000, 0xffffffff, 0, 31, 0x7fffffff}, + {0x00000000, 0xffffffff, 0, 0, 0x00000000}, + {0xff000000, 0x000000ff, 8, 8, 0xff00ff00}, + {0xffff0000, 0xffff0000, 16, 16, 0x00000000}, + {0x0000ffff, 0x0000ffff, 16, 16, 0xffffffff} + }; + + static int test() + { + int Error = 0; + glm::uint count = sizeof(Data32) / sizeof(typeU32); + + for(glm::uint i = 0; i < count; ++i) + { + glm::uint Return = glm::bitfieldInsert( + Data32[i].Base, + Data32[i].Insert, + Data32[i].Offset, + Data32[i].Bits); + + Error += Data32[i].Return == Return ? 0 : 1; + } + + return Error; + } +}//bitfieldInsert + +namespace bitfieldExtract +{ + template<typename genType> + struct type + { + genType Value; + int Offset; + int Bits; + genType Return; + result Result; + }; + + typedef type<glm::uint> typeU32; + + typeU32 const Data32[] = + { + {0xffffffff, 0,32, 0xffffffff, SUCCESS}, + {0xffffffff, 8, 0, 0x00000000, SUCCESS}, + {0x00000000, 0,32, 0x00000000, SUCCESS}, + {0x0f0f0f0f, 0,32, 0x0f0f0f0f, SUCCESS}, + {0x00000000, 8, 0, 0x00000000, SUCCESS}, + {0x80000000,31, 1, 0x00000001, SUCCESS}, + {0x7fffffff,31, 1, 0x00000000, SUCCESS}, + {0x00000300, 8, 8, 0x00000003, SUCCESS}, + {0x0000ff00, 8, 8, 0x000000ff, SUCCESS}, + {0xfffffff0, 0, 5, 0x00000010, SUCCESS}, + {0x000000ff, 1, 3, 0x00000007, SUCCESS}, + {0x000000ff, 0, 3, 0x00000007, SUCCESS}, + {0x00000000, 0, 2, 0x00000000, SUCCESS}, + {0xffffffff, 0, 8, 0x000000ff, SUCCESS}, + {0xffff0000,16,16, 0x0000ffff, SUCCESS}, + {0xfffffff0, 0, 8, 0x00000000, FAIL}, + {0xffffffff,16,16, 0x00000000, FAIL}, + //{0xffffffff,32, 1, 0x00000000, ASSERT}, // Throw an assert + //{0xffffffff, 0,33, 0x00000000, ASSERT}, // Throw an assert + //{0xffffffff,16,16, 0x00000000, ASSERT}, // Throw an assert + }; + + static int test() + { + int Error = 0; + + glm::uint count = sizeof(Data32) / sizeof(typeU32); + + for(glm::uint i = 0; i < count; ++i) + { + glm::uint Return = glm::bitfieldExtract( + Data32[i].Value, + Data32[i].Offset, + Data32[i].Bits); + + bool Compare = Data32[i].Return == Return; + + if(Data32[i].Result == SUCCESS && Compare) + continue; + else if(Data32[i].Result == FAIL && !Compare) + continue; + + Error += 1; + } + + return Error; + } +}//extractField + +namespace bitfieldReverse +{ +/* + GLM_FUNC_QUALIFIER unsigned int bitfieldReverseLoop(unsigned int v) + { + unsigned int Result(0); + unsigned int const BitSize = static_cast<unsigned int>(sizeof(unsigned int) * 8); + for(unsigned int i = 0; i < BitSize; ++i) + { + unsigned int const BitSet(v & (static_cast<unsigned int>(1) << i)); + unsigned int const BitFirst(BitSet >> i); + Result |= BitFirst << (BitSize - 1 - i); + } + return Result; + } + + GLM_FUNC_QUALIFIER glm::uint64_t bitfieldReverseLoop(glm::uint64_t v) + { + glm::uint64_t Result(0); + glm::uint64_t const BitSize = static_cast<glm::uint64_t>(sizeof(unsigned int) * 8); + for(glm::uint64_t i = 0; i < BitSize; ++i) + { + glm::uint64_t const BitSet(v & (static_cast<glm::uint64_t>(1) << i)); + glm::uint64_t const BitFirst(BitSet >> i); + Result |= BitFirst << (BitSize - 1 - i); + } + return Result; + } +*/ + template<glm::length_t L, typename T, glm::qualifier Q> + GLM_FUNC_QUALIFIER glm::vec<L, T, Q> bitfieldReverseLoop(glm::vec<L, T, Q> const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldReverse' only accept integer values"); + + glm::vec<L, T, Q> Result(0); + T const BitSize = static_cast<T>(sizeof(T) * 8); + for(T i = 0; i < BitSize; ++i) + { + glm::vec<L, T, Q> const BitSet(v & (static_cast<T>(1) << i)); + glm::vec<L, T, Q> const BitFirst(BitSet >> i); + Result |= BitFirst << (BitSize - 1 - i); + } + return Result; + } + + template<typename T> + GLM_FUNC_QUALIFIER T bitfieldReverseLoop(T v) + { + return bitfieldReverseLoop(glm::vec<1, T>(v)).x; + } + + GLM_FUNC_QUALIFIER glm::uint32 bitfieldReverseUint32(glm::uint32 x) + { + x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1; + x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2; + x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4; + x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8; + x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16; + return x; + } + + GLM_FUNC_QUALIFIER glm::uint64 bitfieldReverseUint64(glm::uint64 x) + { + x = (x & 0x5555555555555555) << 1 | (x & 0xAAAAAAAAAAAAAAAA) >> 1; + x = (x & 0x3333333333333333) << 2 | (x & 0xCCCCCCCCCCCCCCCC) >> 2; + x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x & 0xF0F0F0F0F0F0F0F0) >> 4; + x = (x & 0x00FF00FF00FF00FF) << 8 | (x & 0xFF00FF00FF00FF00) >> 8; + x = (x & 0x0000FFFF0000FFFF) << 16 | (x & 0xFFFF0000FFFF0000) >> 16; + x = (x & 0x00000000FFFFFFFF) << 32 | (x & 0xFFFFFFFF00000000) >> 32; + return x; + } + + template<bool EXEC = false> + struct compute_bitfieldReverseStep + { + template<glm::length_t L, typename T, glm::qualifier Q> + GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T, T) + { + return v; + } + }; + + template<> + struct compute_bitfieldReverseStep<true> + { + template<glm::length_t L, typename T, glm::qualifier Q> + GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T Mask, T Shift) + { + return (v & Mask) << Shift | (v & (~Mask)) >> Shift; + } + }; + + template<glm::length_t L, typename T, glm::qualifier Q> + GLM_FUNC_QUALIFIER glm::vec<L, T, Q> bitfieldReverseOps(glm::vec<L, T, Q> const& v) + { + glm::vec<L, T, Q> x(v); + x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 2>::call(x, static_cast<T>(0x5555555555555555ull), static_cast<T>( 1)); + x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 4>::call(x, static_cast<T>(0x3333333333333333ull), static_cast<T>( 2)); + x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 8>::call(x, static_cast<T>(0x0F0F0F0F0F0F0F0Full), static_cast<T>( 4)); + x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 16>::call(x, static_cast<T>(0x00FF00FF00FF00FFull), static_cast<T>( 8)); + x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 32>::call(x, static_cast<T>(0x0000FFFF0000FFFFull), static_cast<T>(16)); + x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 64>::call(x, static_cast<T>(0x00000000FFFFFFFFull), static_cast<T>(32)); + return x; + } + + template<typename genType> + GLM_FUNC_QUALIFIER genType bitfieldReverseOps(genType x) + { + return bitfieldReverseOps(glm::vec<1, genType, glm::defaultp>(x)).x; + } + + template<typename genType> + struct type + { + genType Value; + genType Return; + result Result; + }; + + typedef type<glm::uint> typeU32; + + typeU32 const Data32[] = + { + {0x00000001, 0x80000000, SUCCESS}, + {0x0000000f, 0xf0000000, SUCCESS}, + {0x000000ff, 0xff000000, SUCCESS}, + {0xf0000000, 0x0000000f, SUCCESS}, + {0xff000000, 0x000000ff, SUCCESS}, + {0xffffffff, 0xffffffff, SUCCESS}, + {0x00000000, 0x00000000, SUCCESS} + }; + + typedef type<glm::uint64> typeU64; + + typeU64 const Data64[] = + { + {0x00000000000000ff, 0xff00000000000000, SUCCESS}, + {0x000000000000000f, 0xf000000000000000, SUCCESS}, + {0xf000000000000000, 0x000000000000000f, SUCCESS}, + {0xffffffffffffffff, 0xffffffffffffffff, SUCCESS}, + {0x0000000000000000, 0x0000000000000000, SUCCESS} + }; + + static int test32_bitfieldReverse() + { + int Error = 0; + std::size_t const Count = sizeof(Data32) / sizeof(typeU32); + + for(std::size_t i = 0; i < Count; ++i) + { + glm::uint Return = glm::bitfieldReverse(Data32[i].Value); + + bool Compare = Data32[i].Return == Return; + + if(Data32[i].Result == SUCCESS) + Error += Compare ? 0 : 1; + else + Error += Compare ? 1 : 0; + } + + return Error; + } + + static int test32_bitfieldReverseLoop() + { + int Error = 0; + std::size_t const Count = sizeof(Data32) / sizeof(typeU32); + + for(std::size_t i = 0; i < Count; ++i) + { + glm::uint Return = bitfieldReverseLoop(Data32[i].Value); + + bool Compare = Data32[i].Return == Return; + + if(Data32[i].Result == SUCCESS) + Error += Compare ? 0 : 1; + else + Error += Compare ? 1 : 0; + } + + return Error; + } + + static int test32_bitfieldReverseUint32() + { + int Error = 0; + std::size_t const Count = sizeof(Data32) / sizeof(typeU32); + + for(std::size_t i = 0; i < Count; ++i) + { + glm::uint Return = bitfieldReverseUint32(Data32[i].Value); + + bool Compare = Data32[i].Return == Return; + + if(Data32[i].Result == SUCCESS) + Error += Compare ? 0 : 1; + else + Error += Compare ? 1 : 0; + } + + return Error; + } + + static int test32_bitfieldReverseOps() + { + int Error = 0; + std::size_t const Count = sizeof(Data32) / sizeof(typeU32); + + for(std::size_t i = 0; i < Count; ++i) + { + glm::uint Return = bitfieldReverseOps(Data32[i].Value); + + bool Compare = Data32[i].Return == Return; + + if(Data32[i].Result == SUCCESS) + Error += Compare ? 0 : 1; + else + Error += Compare ? 1 : 0; + } + + return Error; + } + + static int test64_bitfieldReverse() + { + int Error = 0; + std::size_t const Count = sizeof(Data64) / sizeof(typeU64); + + for(std::size_t i = 0; i < Count; ++i) + { + glm::uint64 Return = glm::bitfieldReverse(Data64[i].Value); + + bool Compare = Data64[i].Return == Return; + + if(Data64[i].Result == SUCCESS) + Error += Compare ? 0 : 1; + else + Error += Compare ? 1 : 0; + } + + return Error; + } + + static int test64_bitfieldReverseLoop() + { + int Error = 0; + std::size_t const Count = sizeof(Data64) / sizeof(typeU64); + + for(std::size_t i = 0; i < Count; ++i) + { + glm::uint64 Return = bitfieldReverseLoop(Data64[i].Value); + + bool Compare = Data64[i].Return == Return; + + if(Data32[i].Result == SUCCESS) + Error += Compare ? 0 : 1; + else + Error += Compare ? 1 : 0; + } + + return Error; + } + + static int test64_bitfieldReverseUint64() + { + int Error = 0; + std::size_t const Count = sizeof(Data64) / sizeof(typeU64); + + for(std::size_t i = 0; i < Count; ++i) + { + glm::uint64 Return = bitfieldReverseUint64(Data64[i].Value); + + bool Compare = Data64[i].Return == Return; + + if(Data64[i].Result == SUCCESS) + Error += Compare ? 0 : 1; + else + Error += Compare ? 1 : 0; + } + + return Error; + } + + static int test64_bitfieldReverseOps() + { + int Error = 0; + std::size_t const Count = sizeof(Data64) / sizeof(typeU64); + + for(std::size_t i = 0; i < Count; ++i) + { + glm::uint64 Return = bitfieldReverseOps(Data64[i].Value); + + bool Compare = Data64[i].Return == Return; + + if(Data64[i].Result == SUCCESS) + Error += Compare ? 0 : 1; + else + Error += Compare ? 1 : 0; + } + + return Error; + } + + static int test() + { + int Error = 0; + + Error += test32_bitfieldReverse(); + Error += test32_bitfieldReverseLoop(); + Error += test32_bitfieldReverseUint32(); + Error += test32_bitfieldReverseOps(); + + Error += test64_bitfieldReverse(); + Error += test64_bitfieldReverseLoop(); + Error += test64_bitfieldReverseUint64(); + Error += test64_bitfieldReverseOps(); + + return Error; + } + + static int perf32(glm::uint32 Count) + { + int Error = 0; + + std::vector<glm::uint32> Data; + Data.resize(static_cast<std::size_t>(Count)); + + std::clock_t Timestamps0 = std::clock(); + + for(glm::uint32 k = 0; k < Count; ++k) + Data[k] = glm::bitfieldReverse(k); + + std::clock_t Timestamps1 = std::clock(); + + for(glm::uint32 k = 0; k < Count; ++k) + Data[k] = bitfieldReverseLoop(k); + + std::clock_t Timestamps2 = std::clock(); + + for(glm::uint32 k = 0; k < Count; ++k) + Data[k] = bitfieldReverseUint32(k); + + std::clock_t Timestamps3 = std::clock(); + + for(glm::uint32 k = 0; k < Count; ++k) + Data[k] = bitfieldReverseOps(k); + + std::clock_t Timestamps4 = std::clock(); + + std::printf("glm::bitfieldReverse: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); + std::printf("bitfieldReverseLoop: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); + std::printf("bitfieldReverseUint32: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); + std::printf("bitfieldReverseOps: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); + + return Error; + } + + static int perf64(glm::uint64 Count) + { + int Error = 0; + + std::vector<glm::uint64> Data; + Data.resize(static_cast<std::size_t>(Count)); + + std::clock_t Timestamps0 = std::clock(); + + for(glm::uint64 k = 0; k < Count; ++k) + Data[static_cast<std::size_t>(k)] = glm::bitfieldReverse(k); + + std::clock_t Timestamps1 = std::clock(); + + for(glm::uint64 k = 0; k < Count; ++k) + Data[static_cast<std::size_t>(k)] = bitfieldReverseLoop<glm::uint64>(k); + + std::clock_t Timestamps2 = std::clock(); + + for(glm::uint64 k = 0; k < Count; ++k) + Data[static_cast<std::size_t>(k)] = bitfieldReverseUint64(k); + + std::clock_t Timestamps3 = std::clock(); + + for(glm::uint64 k = 0; k < Count; ++k) + Data[static_cast<std::size_t>(k)] = bitfieldReverseOps(k); + + std::clock_t Timestamps4 = std::clock(); + + std::printf("glm::bitfieldReverse - 64: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); + std::printf("bitfieldReverseLoop - 64: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); + std::printf("bitfieldReverseUint - 64: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); + std::printf("bitfieldReverseOps - 64: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); + + return Error; + } + + static int perf(std::size_t Samples) + { + int Error = 0; + + Error += perf32(static_cast<glm::uint32>(Samples)); + Error += perf64(static_cast<glm::uint64>(Samples)); + + return Error; + } +}//bitfieldReverse + +namespace findMSB +{ + template<typename genType, typename retType> + struct type + { + genType Value; + retType Return; + }; + +# if GLM_HAS_BITSCAN_WINDOWS + template<typename genIUType> + static int findMSB_intrinsic(genIUType Value) + { + GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); + + if(Value == 0) + return -1; + + unsigned long Result(0); + _BitScanReverse(&Result, Value); + return int(Result); + } +# endif//GLM_HAS_BITSCAN_WINDOWS + +# if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC + template<typename genIUType> + static int findMSB_avx(genIUType Value) + { + GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); + + if(Value == 0) + return -1; + + return int(_tzcnt_u32(Value)); + } +# endif//GLM_ARCH & GLM_ARCH_AVX && GLM_PLATFORM & GLM_PLATFORM_WINDOWS + + template<typename genIUType> + static int findMSB_095(genIUType Value) + { + GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); + + if(Value == genIUType(0) || Value == genIUType(-1)) + return -1; + else if(Value > 0) + { + genIUType Bit = genIUType(-1); + for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){} + return static_cast<int>(Bit); + } + else //if(Value < 0) + { + int const BitCount(sizeof(genIUType) * 8); + int MostSignificantBit(-1); + for(int BitIndex(0); BitIndex < BitCount; ++BitIndex) + MostSignificantBit = (Value & (1 << BitIndex)) ? MostSignificantBit : BitIndex; + assert(MostSignificantBit >= 0); + return MostSignificantBit; + } + } + + template<typename genIUType> + static int findMSB_nlz1(genIUType x) + { + GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); + + if (x == 0) + return -1; + + int n = 0; + if (x <= 0x0000FFFF) {n = n +16; x = x <<16;} + if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;} + if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;} + if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;} + if (x <= 0x7FFFFFFF) {n = n + 1;} + return 31 - n; + } + + static int findMSB_nlz2(unsigned int x) + { + unsigned int y; + int n = 32; + + y = x >>16; if (y != 0) {n = n -16; x = y;} + y = x >> 8; if (y != 0) {n = n - 8; x = y;} + y = x >> 4; if (y != 0) {n = n - 4; x = y;} + y = x >> 2; if (y != 0) {n = n - 2; x = y;} + y = x >> 1; if (y != 0) return n - 2; + return 32 - (n - static_cast<int>(x)); + } + + static int findMSB_pop(unsigned int x) + { + x = x | (x >> 1); + x = x | (x >> 2); + x = x | (x >> 4); + x = x | (x >> 8); + x = x | (x >>16); + return 31 - glm::bitCount(~x); + } + + static int perf_int(std::size_t Count) + { + type<int, int> const Data[] = + { + {0x00000000, -1}, + {0x00000001, 0}, + {0x00000002, 1}, + {0x00000003, 1}, + {0x00000004, 2}, + {0x00000005, 2}, + {0x00000007, 2}, + {0x00000008, 3}, + {0x00000010, 4}, + {0x00000020, 5}, + {0x00000040, 6}, + {0x00000080, 7}, + {0x00000100, 8}, + {0x00000200, 9}, + {0x00000400, 10}, + {0x00000800, 11}, + {0x00001000, 12}, + {0x00002000, 13}, + {0x00004000, 14}, + {0x00008000, 15}, + {0x00010000, 16}, + {0x00020000, 17}, + {0x00040000, 18}, + {0x00080000, 19}, + {0x00100000, 20}, + {0x00200000, 21}, + {0x00400000, 22}, + {0x00800000, 23}, + {0x01000000, 24}, + {0x02000000, 25}, + {0x04000000, 26}, + {0x08000000, 27}, + {0x10000000, 28}, + {0x20000000, 29}, + {0x40000000, 30} + }; + + int Error(0); + + std::clock_t Timestamps0 = std::clock(); + + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) + { + int Result = glm::findMSB(Data[i].Value); + Error += Data[i].Return == Result ? 0 : 1; + } + + std::clock_t Timestamps1 = std::clock(); + + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) + { + int Result = findMSB_nlz1(Data[i].Value); + Error += Data[i].Return == Result ? 0 : 1; + } + + std::clock_t Timestamps2 = std::clock(); + + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) + { + int Result = findMSB_nlz2(static_cast<unsigned int>(Data[i].Value)); + Error += Data[i].Return == Result ? 0 : 1; + } + + std::clock_t Timestamps3 = std::clock(); + + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) + { + int Result = findMSB_095(static_cast<unsigned int>(Data[i].Value)); + Error += Data[i].Return == Result ? 0 : 1; + } + + std::clock_t Timestamps4 = std::clock(); + +# if GLM_HAS_BITSCAN_WINDOWS + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) + { + int Result = findMSB_intrinsic(Data[i].Value); + Error += Data[i].Return == Result ? 0 : 1; + } +# endif//GLM_HAS_BITSCAN_WINDOWS + + std::clock_t Timestamps5 = std::clock(); + + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) + { + int Result = findMSB_pop(static_cast<unsigned int>(Data[i].Value)); + Error += Data[i].Return == Result ? 0 : 1; + } + + std::clock_t Timestamps6 = std::clock(); + +# if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) + { + int Result = findMSB_avx(Data[i].Value); + Error += Data[i].Return == Result ? 0 : 1; + } + + std::clock_t Timestamps7 = std::clock(); +# endif + + std::printf("glm::findMSB: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); + std::printf("findMSB - nlz1: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); + std::printf("findMSB - nlz2: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); + std::printf("findMSB - 0.9.5: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); + +# if GLM_HAS_BITSCAN_WINDOWS + std::printf("findMSB - intrinsics: %d clocks\n", static_cast<int>(Timestamps5 - Timestamps4)); +# endif//GLM_HAS_BITSCAN_WINDOWS + std::printf("findMSB - pop: %d clocks\n", static_cast<int>(Timestamps6 - Timestamps5)); + +# if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC + std::printf("findMSB - avx tzcnt: %d clocks\n", static_cast<int>(Timestamps7 - Timestamps6)); +# endif//GLM_ARCH & GLM_ARCH_AVX && GLM_PLATFORM & GLM_PLATFORM_WINDOWS + + return Error; + } + + static int test_ivec4() + { + type<glm::ivec4, glm::ivec4> const Data[] = + { + {glm::ivec4(0x00000000), glm::ivec4(-1)}, + {glm::ivec4(0x00000001), glm::ivec4( 0)}, + {glm::ivec4(0x00000002), glm::ivec4( 1)}, + {glm::ivec4(0x00000003), glm::ivec4( 1)}, + {glm::ivec4(0x00000004), glm::ivec4( 2)}, + {glm::ivec4(0x00000005), glm::ivec4( 2)}, + {glm::ivec4(0x00000007), glm::ivec4( 2)}, + {glm::ivec4(0x00000008), glm::ivec4( 3)}, + {glm::ivec4(0x00000010), glm::ivec4( 4)}, + {glm::ivec4(0x00000020), glm::ivec4( 5)}, + {glm::ivec4(0x00000040), glm::ivec4( 6)}, + {glm::ivec4(0x00000080), glm::ivec4( 7)}, + {glm::ivec4(0x00000100), glm::ivec4( 8)}, + {glm::ivec4(0x00000200), glm::ivec4( 9)}, + {glm::ivec4(0x00000400), glm::ivec4(10)}, + {glm::ivec4(0x00000800), glm::ivec4(11)}, + {glm::ivec4(0x00001000), glm::ivec4(12)}, + {glm::ivec4(0x00002000), glm::ivec4(13)}, + {glm::ivec4(0x00004000), glm::ivec4(14)}, + {glm::ivec4(0x00008000), glm::ivec4(15)}, + {glm::ivec4(0x00010000), glm::ivec4(16)}, + {glm::ivec4(0x00020000), glm::ivec4(17)}, + {glm::ivec4(0x00040000), glm::ivec4(18)}, + {glm::ivec4(0x00080000), glm::ivec4(19)}, + {glm::ivec4(0x00100000), glm::ivec4(20)}, + {glm::ivec4(0x00200000), glm::ivec4(21)}, + {glm::ivec4(0x00400000), glm::ivec4(22)}, + {glm::ivec4(0x00800000), glm::ivec4(23)}, + {glm::ivec4(0x01000000), glm::ivec4(24)}, + {glm::ivec4(0x02000000), glm::ivec4(25)}, + {glm::ivec4(0x04000000), glm::ivec4(26)}, + {glm::ivec4(0x08000000), glm::ivec4(27)}, + {glm::ivec4(0x10000000), glm::ivec4(28)}, + {glm::ivec4(0x20000000), glm::ivec4(29)}, + {glm::ivec4(0x40000000), glm::ivec4(30)} + }; + + int Error(0); + + for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::ivec4, glm::ivec4>); ++i) + { + glm::ivec4 Result0 = glm::findMSB(Data[i].Value); + Error += glm::all(glm::equal(Data[i].Return, Result0)) ? 0 : 1; + } + + return Error; + } + + static int test_int() + { + typedef type<glm::uint, int> entry; + + entry const Data[] = + { + {0x00000000, -1}, + {0x00000001, 0}, + {0x00000002, 1}, + {0x00000003, 1}, + {0x00000004, 2}, + {0x00000005, 2}, + {0x00000007, 2}, + {0x00000008, 3}, + {0x00000010, 4}, + {0x00000020, 5}, + {0x00000040, 6}, + {0x00000080, 7}, + {0x00000100, 8}, + {0x00000200, 9}, + {0x00000400, 10}, + {0x00000800, 11}, + {0x00001000, 12}, + {0x00002000, 13}, + {0x00004000, 14}, + {0x00008000, 15}, + {0x00010000, 16}, + {0x00020000, 17}, + {0x00040000, 18}, + {0x00080000, 19}, + {0x00100000, 20}, + {0x00200000, 21}, + {0x00400000, 22}, + {0x00800000, 23}, + {0x01000000, 24}, + {0x02000000, 25}, + {0x04000000, 26}, + {0x08000000, 27}, + {0x10000000, 28}, + {0x20000000, 29}, + {0x40000000, 30} + }; + + int Error(0); + + for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) + { + int Result0 = glm::findMSB(Data[i].Value); + Error += Data[i].Return == Result0 ? 0 : 1; + } + + for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) + { + int Result0 = findMSB_nlz1(Data[i].Value); + Error += Data[i].Return == Result0 ? 0 : 1; + } +/* + for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) + { + int Result0 = findMSB_nlz2(Data[i].Value); + Error += Data[i].Return == Result0 ? 0 : 1; + } +*/ + for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) + { + int Result0 = findMSB_095(Data[i].Value); + Error += Data[i].Return == Result0 ? 0 : 1; + } + +# if GLM_HAS_BITSCAN_WINDOWS + for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) + { + int Result0 = findMSB_intrinsic(Data[i].Value); + Error += Data[i].Return == Result0 ? 0 : 1; + } +# endif//GLM_HAS_BITSCAN_WINDOWS + + for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) + { + int Result0 = findMSB_pop(Data[i].Value); + Error += Data[i].Return == Result0 ? 0 : 1; + } + + return Error; + } + + static int test() + { + int Error(0); + + Error += test_ivec4(); + Error += test_int(); + + return Error; + } + + static int perf(std::size_t Samples) + { + int Error(0); + + Error += perf_int(Samples); + + return Error; + } +}//findMSB + +namespace findLSB +{ + template<typename genType, typename retType> + struct type + { + genType Value; + retType Return; + }; + + typedef type<int, int> entry; + + entry const DataI32[] = + { + {0x00000001, 0}, + {0x00000003, 0}, + {0x00000002, 1}, + // {0x80000000, 31}, // Clang generates an error with this + {0x00010000, 16}, + {0x7FFF0000, 16}, + {0x7F000000, 24}, + {0x7F00FF00, 8}, + {0x00000000, -1} + }; + +# if GLM_HAS_BITSCAN_WINDOWS + template<typename genIUType> + static int findLSB_intrinsic(genIUType Value) + { + GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values"); + + if(Value == 0) + return -1; + + unsigned long Result(0); + _BitScanForward(&Result, Value); + return int(Result); + } +# endif + + template<typename genIUType> + static int findLSB_095(genIUType Value) + { + GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values"); + if(Value == 0) + return -1; + + genIUType Bit; + for(Bit = genIUType(0); !(Value & (1 << Bit)); ++Bit){} + return Bit; + } + + template<typename genIUType> + static int findLSB_ntz2(genIUType x) + { + if(x == 0) + return -1; + + return glm::bitCount(~x & (x - static_cast<genIUType>(1))); + } + + template<typename genIUType> + static int findLSB_branchfree(genIUType x) + { + bool IsNull(x == 0); + int const Keep(!IsNull); + int const Discard(IsNull); + + return static_cast<int>(glm::bitCount(~x & (x - static_cast<genIUType>(1)))) * Keep + Discard * -1; + } + + static int test_int() + { + int Error(0); + + for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) + { + int Result = glm::findLSB(DataI32[i].Value); + Error += DataI32[i].Return == Result ? 0 : 1; + } + + for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) + { + int Result = findLSB_095(DataI32[i].Value); + Error += DataI32[i].Return == Result ? 0 : 1; + } + +# if GLM_HAS_BITSCAN_WINDOWS + for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) + { + int Result = findLSB_intrinsic(DataI32[i].Value); + Error += DataI32[i].Return == Result ? 0 : 1; + } +# endif + + for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) + { + int Result = findLSB_ntz2(DataI32[i].Value); + Error += DataI32[i].Return == Result ? 0 : 1; + } + + for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) + { + int Result = findLSB_branchfree(DataI32[i].Value); + Error += DataI32[i].Return == Result ? 0 : 1; + } + + return Error; + } + + static int test() + { + int Error(0); + + Error += test_int(); + + return Error; + } + + static int perf_int(std::size_t Count) + { + int Error(0); + + std::clock_t Timestamps0 = std::clock(); + + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) + { + int Result = glm::findLSB(DataI32[i].Value); + Error += DataI32[i].Return == Result ? 0 : 1; + } + + std::clock_t Timestamps1 = std::clock(); + + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) + { + int Result = findLSB_095(DataI32[i].Value); + Error += DataI32[i].Return == Result ? 0 : 1; + } + + std::clock_t Timestamps2 = std::clock(); + +# if GLM_HAS_BITSCAN_WINDOWS + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) + { + int Result = findLSB_intrinsic(DataI32[i].Value); + Error += DataI32[i].Return == Result ? 0 : 1; + } +# endif + + std::clock_t Timestamps3 = std::clock(); + + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) + { + int Result = findLSB_ntz2(DataI32[i].Value); + Error += DataI32[i].Return == Result ? 0 : 1; + } + + std::clock_t Timestamps4 = std::clock(); + + for(std::size_t k = 0; k < Count; ++k) + for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) + { + int Result = findLSB_branchfree(DataI32[i].Value); + Error += DataI32[i].Return == Result ? 0 : 1; + } + + std::clock_t Timestamps5 = std::clock(); + + std::printf("glm::findLSB: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); + std::printf("findLSB - 0.9.5: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); + +# if GLM_HAS_BITSCAN_WINDOWS + std::printf("findLSB - intrinsics: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); +# endif + + std::printf("findLSB - ntz2: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); + std::printf("findLSB - branchfree: %d clocks\n", static_cast<int>(Timestamps5 - Timestamps4)); + + return Error; + } + + static int perf(std::size_t Samples) + { + int Error(0); + + Error += perf_int(Samples); + + return Error; + } +}//findLSB + +namespace uaddCarry +{ + static int test() + { + int Error(0); + + { + glm::uint x = std::numeric_limits<glm::uint>::max(); + glm::uint y = 0; + glm::uint Carry = 0; + glm::uint Result = glm::uaddCarry(x, y, Carry); + + Error += Carry == 0 ? 0 : 1; + Error += Result == std::numeric_limits<glm::uint>::max() ? 0 : 1; + } + + { + glm::uint x = std::numeric_limits<glm::uint>::max(); + glm::uint y = 1; + glm::uint Carry = 0; + glm::uint Result = glm::uaddCarry(x, y, Carry); + + Error += Carry == 1 ? 0 : 1; + Error += Result == 0 ? 0 : 1; + } + + { + glm::uvec1 x(std::numeric_limits<glm::uint>::max()); + glm::uvec1 y(0); + glm::uvec1 Carry(0); + glm::uvec1 Result(glm::uaddCarry(x, y, Carry)); + + Error += glm::all(glm::equal(Carry, glm::uvec1(0))) ? 0 : 1; + Error += glm::all(glm::equal(Result, glm::uvec1(std::numeric_limits<glm::uint>::max()))) ? 0 : 1; + } + + { + glm::uvec1 x(std::numeric_limits<glm::uint>::max()); + glm::uvec1 y(1); + glm::uvec1 Carry(0); + glm::uvec1 Result(glm::uaddCarry(x, y, Carry)); + + Error += glm::all(glm::equal(Carry, glm::uvec1(1))) ? 0 : 1; + Error += glm::all(glm::equal(Result, glm::uvec1(0))) ? 0 : 1; + } + + return Error; + } +}//namespace uaddCarry + +namespace usubBorrow +{ + static int test() + { + int Error(0); + + { + glm::uint x = 16; + glm::uint y = 17; + glm::uint Borrow = 0; + glm::uint Result = glm::usubBorrow(x, y, Borrow); + + Error += Borrow == 1 ? 0 : 1; + Error += Result == 1 ? 0 : 1; + } + + { + glm::uvec1 x(16); + glm::uvec1 y(17); + glm::uvec1 Borrow(0); + glm::uvec1 Result(glm::usubBorrow(x, y, Borrow)); + + Error += glm::all(glm::equal(Borrow, glm::uvec1(1))) ? 0 : 1; + Error += glm::all(glm::equal(Result, glm::uvec1(1))) ? 0 : 1; + } + + { + glm::uvec2 x(16); + glm::uvec2 y(17); + glm::uvec2 Borrow(0); + glm::uvec2 Result(glm::usubBorrow(x, y, Borrow)); + + Error += glm::all(glm::equal(Borrow, glm::uvec2(1))) ? 0 : 1; + Error += glm::all(glm::equal(Result, glm::uvec2(1))) ? 0 : 1; + } + + { + glm::uvec3 x(16); + glm::uvec3 y(17); + glm::uvec3 Borrow(0); + glm::uvec3 Result(glm::usubBorrow(x, y, Borrow)); + + Error += glm::all(glm::equal(Borrow, glm::uvec3(1))) ? 0 : 1; + Error += glm::all(glm::equal(Result, glm::uvec3(1))) ? 0 : 1; + } + + { + glm::uvec4 x(16); + glm::uvec4 y(17); + glm::uvec4 Borrow(0); + glm::uvec4 Result(glm::usubBorrow(x, y, Borrow)); + + Error += glm::all(glm::equal(Borrow, glm::uvec4(1))) ? 0 : 1; + Error += glm::all(glm::equal(Result, glm::uvec4(1))) ? 0 : 1; + } + + return Error; + } +}//namespace usubBorrow + +namespace umulExtended +{ + static int test() + { + int Error(0); + + { + glm::uint x = 2; + glm::uint y = 3; + glm::uint msb = 0; + glm::uint lsb = 0; + glm::umulExtended(x, y, msb, lsb); + + Error += msb == 0 ? 0 : 1; + Error += lsb == 6 ? 0 : 1; + } + + { + glm::uvec1 x(2); + glm::uvec1 y(3); + glm::uvec1 msb(0); + glm::uvec1 lsb(0); + glm::umulExtended(x, y, msb, lsb); + + Error += glm::all(glm::equal(msb, glm::uvec1(0))) ? 0 : 1; + Error += glm::all(glm::equal(lsb, glm::uvec1(6))) ? 0 : 1; + } + + { + glm::uvec2 x(2); + glm::uvec2 y(3); + glm::uvec2 msb(0); + glm::uvec2 lsb(0); + glm::umulExtended(x, y, msb, lsb); + + Error += glm::all(glm::equal(msb, glm::uvec2(0))) ? 0 : 1; + Error += glm::all(glm::equal(lsb, glm::uvec2(6))) ? 0 : 1; + } + + { + glm::uvec3 x(2); + glm::uvec3 y(3); + glm::uvec3 msb(0); + glm::uvec3 lsb(0); + glm::umulExtended(x, y, msb, lsb); + + Error += glm::all(glm::equal(msb, glm::uvec3(0))) ? 0 : 1; + Error += glm::all(glm::equal(lsb, glm::uvec3(6))) ? 0 : 1; + } + + { + glm::uvec4 x(2); + glm::uvec4 y(3); + glm::uvec4 msb(0); + glm::uvec4 lsb(0); + glm::umulExtended(x, y, msb, lsb); + + Error += glm::all(glm::equal(msb, glm::uvec4(0))) ? 0 : 1; + Error += glm::all(glm::equal(lsb, glm::uvec4(6))) ? 0 : 1; + } + + return Error; + } +}//namespace umulExtended + +namespace imulExtended +{ + static int test() + { + int Error(0); + + { + int x = 2; + int y = 3; + int msb = 0; + int lsb = 0; + glm::imulExtended(x, y, msb, lsb); + + Error += msb == 0 ? 0 : 1; + Error += lsb == 6 ? 0 : 1; + } + + { + glm::ivec1 x(2); + glm::ivec1 y(3); + glm::ivec1 msb(0); + glm::ivec1 lsb(0); + glm::imulExtended(x, y, msb, lsb); + + Error += glm::all(glm::equal(msb, glm::ivec1(0))) ? 0 : 1; + Error += glm::all(glm::equal(lsb, glm::ivec1(6))) ? 0 : 1; + } + + { + glm::ivec2 x(2); + glm::ivec2 y(3); + glm::ivec2 msb(0); + glm::ivec2 lsb(0); + glm::imulExtended(x, y, msb, lsb); + + Error += glm::all(glm::equal(msb, glm::ivec2(0))) ? 0 : 1; + Error += glm::all(glm::equal(lsb, glm::ivec2(6))) ? 0 : 1; + } + + { + glm::ivec3 x(2); + glm::ivec3 y(3); + glm::ivec3 msb(0); + glm::ivec3 lsb(0); + glm::imulExtended(x, y, msb, lsb); + + Error += glm::all(glm::equal(msb, glm::ivec3(0))) ? 0 : 1; + Error += glm::all(glm::equal(lsb, glm::ivec3(6))) ? 0 : 1; + } + + { + glm::ivec4 x(2); + glm::ivec4 y(3); + glm::ivec4 msb(0); + glm::ivec4 lsb(0); + glm::imulExtended(x, y, msb, lsb); + + Error += glm::all(glm::equal(msb, glm::ivec4(0))) ? 0 : 1; + Error += glm::all(glm::equal(lsb, glm::ivec4(6))) ? 0 : 1; + } + + return Error; + } +}//namespace imulExtended + +namespace bitCount +{ + template<typename genType> + struct type + { + genType Value; + genType Return; + }; + + type<int> const DataI32[] = + { + {0x00000001, 1}, + {0x00000003, 2}, + {0x00000002, 1}, + {0x7fffffff, 31}, + {0x00000000, 0} + }; + + template<typename T> + inline int bitCount_if(T v) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values"); + + int Count(0); + for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i) + { + if(v & static_cast<T>(1 << i)) + ++Count; + } + return Count; + } + + template<typename T> + inline int bitCount_vec(T v) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values"); + + int Count(0); + for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i) + { + Count += static_cast<int>((v >> i) & static_cast<T>(1)); + } + return Count; + } + + template<bool EXEC = false> + struct compute_bitfieldBitCountStep + { + template<glm::length_t L, typename T, glm::qualifier Q> + GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T, T) + { + return v; + } + }; + + template<> + struct compute_bitfieldBitCountStep<true> + { + template<glm::length_t L, typename T, glm::qualifier Q> + GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T Mask, T Shift) + { + return (v & Mask) + ((v >> Shift) & Mask); + } + }; + + template<glm::length_t L, typename T, glm::qualifier Q> + static glm::vec<L, int, Q> bitCount_bitfield(glm::vec<L, T, Q> const& v) + { + glm::vec<L, typename glm::detail::make_unsigned<T>::type, Q> x(*reinterpret_cast<glm::vec<L, typename glm::detail::make_unsigned<T>::type, Q> const *>(&v)); + x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 2>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x5555555555555555ull), static_cast<typename glm::detail::make_unsigned<T>::type>( 1)); + x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 4>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x3333333333333333ull), static_cast<typename glm::detail::make_unsigned<T>::type>( 2)); + x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 8>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x0F0F0F0F0F0F0F0Full), static_cast<typename glm::detail::make_unsigned<T>::type>( 4)); + x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 16>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x00FF00FF00FF00FFull), static_cast<typename glm::detail::make_unsigned<T>::type>( 8)); + x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 32>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x0000FFFF0000FFFFull), static_cast<typename glm::detail::make_unsigned<T>::type>(16)); + x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 64>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x00000000FFFFFFFFull), static_cast<typename glm::detail::make_unsigned<T>::type>(32)); + return glm::vec<L, int, Q>(x); + } + + template<typename genType> + static int bitCount_bitfield(genType x) + { + return bitCount_bitfield(glm::vec<1, genType, glm::defaultp>(x)).x; + } + + static int perf(std::size_t Size) + { + int Error(0); + + std::vector<int> v; + v.resize(Size); + + std::vector<glm::ivec4> w; + w.resize(Size); + + + std::clock_t TimestampsA = std::clock(); + + // bitCount - TimeIf + { + for(std::size_t i = 0, n = v.size(); i < n; ++i) + v[i] = bitCount_if(static_cast<int>(i)); + } + + std::clock_t TimestampsB = std::clock(); + + // bitCount - TimeVec + { + for(std::size_t i = 0, n = v.size(); i < n; ++i) + v[i] = bitCount_vec(i); + } + + std::clock_t TimestampsC = std::clock(); + + // bitCount - TimeDefault + { + for(std::size_t i = 0, n = v.size(); i < n; ++i) + v[i] = glm::bitCount(i); + } + + std::clock_t TimestampsD = std::clock(); + + // bitCount - TimeVec4 + { + for(std::size_t i = 0, n = v.size(); i < n; ++i) + w[i] = glm::bitCount(glm::ivec4(static_cast<int>(i))); + } + + std::clock_t TimestampsE = std::clock(); + + { + for(std::size_t i = 0, n = v.size(); i < n; ++i) + v[i] = bitCount_bitfield(static_cast<int>(i)); + } + + std::clock_t TimestampsF = std::clock(); + + std::printf("bitCount - TimeIf %d\n", static_cast<int>(TimestampsB - TimestampsA)); + std::printf("bitCount - TimeVec %d\n", static_cast<int>(TimestampsC - TimestampsB)); + std::printf("bitCount - TimeDefault %d\n", static_cast<int>(TimestampsD - TimestampsC)); + std::printf("bitCount - TimeVec4 %d\n", static_cast<int>(TimestampsE - TimestampsD)); + std::printf("bitCount - bitfield %d\n", static_cast<int>(TimestampsF - TimestampsE)); + + return Error; + } + + static int test() + { + int Error(0); + + for(std::size_t i = 0, n = sizeof(DataI32) / sizeof(type<int>); i < n; ++i) + { + int ResultA = glm::bitCount(DataI32[i].Value); + int ResultB = bitCount_if(DataI32[i].Value); + int ResultC = bitCount_vec(DataI32[i].Value); + int ResultE = bitCount_bitfield(DataI32[i].Value); + + Error += DataI32[i].Return == ResultA ? 0 : 1; + Error += DataI32[i].Return == ResultB ? 0 : 1; + Error += DataI32[i].Return == ResultC ? 0 : 1; + Error += DataI32[i].Return == ResultE ? 0 : 1; + + assert(!Error); + } + + return Error; + } +}//bitCount + +int main() +{ + int Error = 0; + + Error += ::bitCount::test(); + Error += ::bitfieldReverse::test(); + Error += ::findMSB::test(); + Error += ::findLSB::test(); + Error += ::umulExtended::test(); + Error += ::imulExtended::test(); + Error += ::uaddCarry::test(); + Error += ::usubBorrow::test(); + Error += ::bitfieldInsert::test(); + Error += ::bitfieldExtract::test(); + +# ifdef NDEBUG + std::size_t const Samples = 1000; +# else + std::size_t const Samples = 1; +# endif + + ::bitCount::perf(Samples); + ::bitfieldReverse::perf(Samples); + ::findMSB::perf(Samples); + ::findLSB::perf(Samples); + + return Error; +} |