1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
#version 330 core
layout(location = 0) in vec3 position; // Position of the vertex
layout(location = 1) in vec3 normal; // Normal of the vertex
uniform mat4 proj;
uniform mat4 view;
uniform mat4 model;
uniform mat4 inverseView;
//uniform float width;
//uniform float height; // TODO: Pass in width and height as uniform
uniform mat3 inverseTransposeModel;
out vec3 normal_cameraSpace;
out vec3 normal_worldSpace;
out vec3 camera_worldSpace;
out vec3 pos;
out vec3 refrPos;
out float refrProb;
out vec2 uv;
out float matIor;
vec4 getRefrPos() {
float depth = -1.f; // TODO: Pass as uniform
vec3 w_o = normalize(pos - camera_worldSpace);
float cos_theta_i = dot(-w_o, normal_worldSpace);
float n_i = 1;
float n_t = 1.33f;
// matIor = n_t;
float determinant = 1.f - (pow((n_i / n_t), 2.f) * (1.f - pow(cos_theta_i, 2.f)));
float r0 = pow((n_i - n_t) / (n_i + n_t), 2.f); // variable required to calculate probability of reflection
float prob_to_refl = r0 + ((1 - r0) * pow((1 - cos_theta_i), 5.f));
if (determinant >= 0) {
float cos_theta_t = sqrt(determinant);
vec3 w_t = (n_i / n_t) * w_o + ((n_i / n_t) * cos_theta_i - cos_theta_t) * normal_worldSpace;
// Ray reflectedRay(i.hit, w_t);
// float attenuation = (!entering && attenuateRefract) ? std::pow(M_E, (-(ray.o - i.hit).norm()) * mat.ior) : 1;
// L += traceRay(reflectedRay, scene, true, n_t, !is_in_refractor) * attenuation / threshold;
float dist = position.y - depth;
float depthScale = dist / w_t.y;
vec3 groundContactPoint = -(w_t * depthScale) + position;
return vec4(groundContactPoint, 1.f - prob_to_refl);
} else {
// Eigen::Vector3f w_i = w_o - 2 * w_o.dot(intersectNormal) * incidenceNormal;
// Ray reflectedRay(i.hit, w_i);
// L += traceRay(reflectedRay, scene, true, current_ior, false) / threshold;
return vec4(0, 0, 0, 0);
}
}
void main() {
float depth = -2.f;
float dist = position.y - depth;
float width = 81.f * 2.f;
float length = 81.f * 2.f;
matIor = 1.33f;
normal_cameraSpace = normalize(inverse(transpose(mat3(view))) * inverseTransposeModel * normal);
camera_worldSpace = vec3(inverseView * vec4(0.f, 0.f, 0.f, 1.f));
normal_worldSpace = normal;
pos = vec3(model * vec4(position, 1.f)); //vec3(model * vec4(objSpacePos, 1.f));
// pos = position;
float depthScale = dist / normal.y;
vec3 groundContactPoint = -(normal * depthScale) + position; // carries down to ground
groundContactPoint = vec3(model * vec4(position, 1));
uv = vec2((position.x + 81.f) / (162.f), groundContactPoint.z);
// uv = vec2(normal);
vec4 refrPos_and_prob = getRefrPos();
refrPos = vec3(refrPos_and_prob);
refrProb = clamp(refrPos_and_prob.w, 0.f, 1.f);
gl_Position = proj * view * model * vec4(position, 1);
}
|