1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
|
#include "ocean_alt.h"
#include <iostream>
ocean_alt::ocean_alt()
{
// to be used for efficiency during fft
std::cout << "hello" << std::endl;
init_wave_index_constants();
}
// initializes static constants (aka they are not time dependent)
void ocean_alt::init_wave_index_constants(){
float tex_step = 1.f/num_rows;
for (int i=0; i<N; i++){
Eigen::Vector2i m_n = index_1d_to_2d(i);
int n_prime = m_n[0];
int m_prime = m_n[1];
Eigen::Vector2d k = get_k_vector(n_prime, m_prime);
Eigen::Vector2d k_conj = get_k_vector(-n_prime, m_prime);
// Eigen::Vector3f v = Eigen::Vector3f(0,0,1);
// Eigen::Vector3f norm = Eigen::Vector3f(0,1,0);
// if (abs(norm[1]) < 1.f){
// v = (Eigen::Vector3f(0,1,0) - norm[1]*norm).normalized();
// }
// Eigen::Vector3f u = norm.cross(v).normalized();
// float u_coord = u.dot(Eigen::Vector3f(n_prime, 0, m_prime)) / 64.f;
// float v_coord = v.dot(Eigen::Vector3f(n_prime, 0, m_prime)) / 64.f;
// //std::cout << u_coord << ", " << v_coord << std::endl;
// texture coord:
Eigen::Vector2f texCoord = Eigen::Vector2f(1, 1);
// store h0'(n,m) and w'(n,m) for every index, to be used for later
Eigen::Vector2d h0_prime = h_0_prime(k);
// conjugate of a+bi is a-bi
Eigen::Vector2d h0_prime_conj = h_0_prime(k_conj);
h0_prime_conj = Eigen::Vector2d(h0_prime_conj[0], -h0_prime_conj[1]);
double w_prime = omega_prime(k);
// populate map to be used for later
WaveIndexConstant wave_const;
wave_const.h0_prime = h0_prime;
wave_const.h0_prime_conj = h0_prime_conj;
wave_const.w_prime = w_prime;
wave_const.base_horiz_pos = get_horiz_pos(i);
wave_const.k_vector = k;
m_waveIndexConstants[i] = wave_const;
// initialize m_current_h to be h0 for now
// m_current_h.push_back(h0_prime);
m_current_h.push_back(Eigen::Vector2d(0.0, 0.0));
// m_displacements.push_back(Eigen::Vector2d(0.0, 0.0));
// m_slopes.push_back(Eigen::Vector2d(0.0, 0.0));
m_normals.push_back(Eigen::Vector3f(0.0, 1.0, 0.0));
// initialize foam constant vectors
m_foam_constants.k_vectors.push_back(Eigen::Vector2f(k[0], k[1]));
m_foam_constants.positions.push_back(Eigen::Vector3f(0,0,0));
m_foam_constants.wavelengths.push_back(0);
// m_foam_constants.texCoords.push_back(texCoord);
m_slopes_x.push_back(Eigen::Vector2d(0.0, 0.0));
m_slopes_z.push_back(Eigen::Vector2d(0.0, 0.0));
m_displacements_x.push_back(Eigen::Vector2d(0.0, 0.0));
m_displacements_z.push_back(Eigen::Vector2d(0.0, 0.0));
m_vertices.push_back(Eigen::Vector3f(0.0, 0.0, 0.0));
}
}
// fast fourier transform at time t
void ocean_alt::fft_prime(double t){
// FFT
std::vector<Eigen::Vector2d> h_tildas = std::vector<Eigen::Vector2d>();
// std::vector<Eigen::Vector2d> ikh = std::vector<Eigen::Vector2d>();
// std::vector<Eigen::Vector2d> neg_ik_hat_h = std::vector<Eigen::Vector2d>();
std::vector<Eigen::Vector2d> ikhx = std::vector<Eigen::Vector2d>();
std::vector<Eigen::Vector2d> ikhz = std::vector<Eigen::Vector2d>();
std::vector<Eigen::Vector2d> neg_ik_hat_h_x = std::vector<Eigen::Vector2d>();
std::vector<Eigen::Vector2d> neg_ik_hat_h_z = std::vector<Eigen::Vector2d>();
// find each h_tilda at each index, to be used for next for loop
for (int i=0; i<N; i++){
Eigen::Vector2d h_t_prime = h_prime_t(i, t); // vector(real, imag)
h_tildas.emplace_back(h_t_prime);
Eigen::Vector2d k_vector = m_waveIndexConstants[i].k_vector;
// ikh.emplace_back(-h_t_prime[1] * k_vector[0], -h_t_prime[1] * k_vector[1]);
ikhx.emplace_back(-h_t_prime[1] * k_vector[0], -h_t_prime[1] * k_vector[0]);
ikhz.emplace_back(-h_t_prime[1] * k_vector[1], -h_t_prime[1] * k_vector[1]);
// Eigen::Vector2d neg_ik_hat_h_val =
// Eigen::Vector2d(k_normalized[1] * h_t_prime[1], k_normalized[0] * h_t_prime[1]);
// neg_ik_hat_h.emplace_back(neg_ik_hat_h_val);
double len = k_vector.norm();
if (len < .000001)
{
neg_ik_hat_h_x.emplace_back(0.0, 0.0);
neg_ik_hat_h_z.emplace_back(0.0, 0.0);
}
else
{
Eigen::Vector2d k_normalized = k_vector.normalized();
neg_ik_hat_h_x.emplace_back(k_normalized[0] * h_t_prime[1], k_normalized[0] * h_t_prime[1]);
neg_ik_hat_h_z.emplace_back(k_normalized[1] * h_t_prime[1], k_normalized[1] * h_t_prime[1]);
}
}
bool fast = true;
if (fast)
{
std::vector<Eigen::Vector2d> tmp = fast_fft(h_tildas);
// std::vector<Eigen::Vector2d> tmp2 = fast_fft(ikh);
// std::vector<Eigen::Vector2d> tmp3 = fast_fft(neg_ik_hat_h);
std::vector<Eigen::Vector2d> tmp4 = fast_fft(ikhx);
std::vector<Eigen::Vector2d> tmp5 = fast_fft(ikhz);
std::vector<Eigen::Vector2d> tmp6 = fast_fft(neg_ik_hat_h_x);
std::vector<Eigen::Vector2d> tmp7 = fast_fft(neg_ik_hat_h_z);
for (int i = 0; i < N; i++)
{
m_current_h[i] = tmp[i];
// m_slopes[i] = tmp2[i];
// m_displacements[i] = tmp3[i];
m_slopes_x[i] = tmp4[i];
m_slopes_z[i] = tmp5[i];
m_displacements_x[i] = tmp6[i];
m_displacements_z[i] = tmp7[i];
}
return;
}
// for each position in grid, sum up amplitudes dependng on that position
for (int i=0; i<N; i++){
Eigen::Vector2d x_vector = m_waveIndexConstants[i].base_horiz_pos;
m_current_h[i] = Eigen::Vector2d(0.0, 0.0);
// m_displacements[i] = Eigen::Vector2d(0.0, 0.0);
// m_slopes[i] = Eigen::Vector2d(0.0, 0.0);
for (int j = 0; j < N; j++){
Eigen::Vector2d k_vector = m_waveIndexConstants[j].k_vector;
Eigen::Vector2d h_tilda_prime = h_tildas[j]; // vector(real, imag)
// add x vector and k vector as imaginary numbers
double imag_xk_sum = x_vector.dot(k_vector);
Eigen::Vector2d exp = complex_exp(-imag_xk_sum); // vector(real, imag)
double real_comp = h_tilda_prime[0]*exp[0] - h_tilda_prime[1]*exp[1];
double imag_comp = h_tilda_prime[0]*exp[1] + h_tilda_prime[1]*exp[0];
m_current_h[i] += Eigen::Vector2d(real_comp, imag_comp);
Eigen::Vector2d k_normalized = k_vector.normalized();
// m_displacements[i] += k_normalized*imag_comp;
// m_slopes[i] += -k_vector*imag_comp;
}
}
}
// time dependent calculation of h'(n,m,t)
Eigen::Vector2d ocean_alt::h_prime_t(int i, double t){
Eigen::Vector2d h0_prime = m_waveIndexConstants[i].h0_prime; // vector(real, imag)
Eigen::Vector2d h0_prime_conj = m_waveIndexConstants[i].h0_prime_conj; // vector(real, imag)
double w_prime = m_waveIndexConstants[i].w_prime;
Eigen::Vector2d pos_complex_exp = complex_exp(w_prime*t); // vector(real, imag)
Eigen::Vector2d neg_complex_exp = complex_exp(-w_prime*t); // vector(real, imag)
// now multiply our four vector(real, imag) out
double real_comp =
(h0_prime[0]*pos_complex_exp[0] - h0_prime[1]*pos_complex_exp[1]) +
(h0_prime_conj[0]*neg_complex_exp[0] - h0_prime_conj[1]*neg_complex_exp[1]);
double imag_comp =
(h0_prime[0]*pos_complex_exp[1] + h0_prime[1]*pos_complex_exp[0]) +
(h0_prime_conj[0]*neg_complex_exp[1] + h0_prime_conj[1]*neg_complex_exp[0]);
return Eigen::Vector2d(real_comp, imag_comp);
}
double ocean_alt::omega_prime(Eigen::Vector2d k){
// calculate omega^4 first to prevent sqrts
double w = sqrt(gravity*k.norm());
return w;
}
Eigen::Vector2d ocean_alt::h_0_prime(Eigen::Vector2d k){
double Ph_prime = phillips_prime(k);
std::pair<double,double> randoms = sample_complex_gaussian();
double random_r = randoms.first;
double random_i = randoms.second;
// seperate real and imag products
double coeff = 0.707106781187 * sqrt(Ph_prime);
double real_comp = coeff*random_r;
double imag_comp = coeff*random_i;
return Eigen::Vector2d(real_comp, imag_comp);
}
double ocean_alt::phillips_prime(Eigen::Vector2d k){
double k_mag = k.norm();
k.normalize();
double dot_prod = k.dot(omega_wind);
double output = 0.0;
// l = 1
if (k_mag < .0001) return 0.0;
if (k_mag > 1.0){
output = A*exp(-(k_mag*k_mag))*dot_prod*dot_prod/(k_mag*k_mag*k_mag*k_mag);
} else {
output = A*exp(-1.0/(k_mag*L*k_mag*L))*dot_prod*dot_prod/(k_mag*k_mag*k_mag*k_mag);
}
return output;
}
Eigen::Vector2d ocean_alt::get_k_vector(int n_prime, int m_prime){
double n_ = (double)n_prime;
double m_ = (double)m_prime;
double N_ = (double)num_rows;
double M_ = (double)num_cols;
double k_x = (2*M_PI*n_ - M_PI*N_)/Lx;
double k_z = (2*M_PI*m_ - M_PI*M_)/Lz;
return Eigen::Vector2d(k_x, k_z);
}
Eigen::Vector2d ocean_alt::get_horiz_pos(int i){
Eigen::Vector2i m_n = index_1d_to_2d(i);
double n_prime = (double)m_n[0];
double m_prime = (double)m_n[1];
double N_ = (double)num_rows;
double M_ = (double)num_cols;
double x = (n_prime-.5*N_)*Lx / N_;
double z = (m_prime-.5*M_)*Lz / M_;
return Eigen::Vector2d(x, z);
}
Eigen::Vector2i ocean_alt::index_1d_to_2d(int i){
int row = i/num_rows; // n'
int col = i%num_rows; // m'
return Eigen::Vector2i(row, col);
}
std::pair<double,double> ocean_alt::sample_complex_gaussian(){
double uniform_1 = (double)rand() / (RAND_MAX);
double uniform_2 = (double)rand() / (RAND_MAX);
// set a lower bound on zero to avoid undefined log(0)
if (uniform_1 == 0)
{
uniform_1 = 1e-10;
}
if (uniform_2 == 0)
{
uniform_2 = 1e-10;
}
// real and imaginary parts of the complex number
double real = sqrt(-2*log(uniform_1)) * cos(2*M_PI*uniform_2);
double imag = sqrt(-2*log(uniform_1)) * sin(2*M_PI*uniform_2);
return std::make_pair(real, imag);
}
Eigen::Vector2d ocean_alt::complex_exp(double exponent){
double real = cos(exponent);
double imag = sin(exponent);
return Eigen::Vector2d(real, imag);
}
void ocean_alt::update_ocean()
{
std::vector<Eigen::Vector3f> vertices = std::vector<Eigen::Vector3f>();
// reset normals & vertices arrays for the single tile
m_vertices = std::vector<Eigen::Vector3f>(N);
m_normals = std::vector<Eigen::Vector3f>(N);
m_heights.clear();
for (int i = 0; i < N; i++){
Eigen::Vector2d horiz_pos = spacing*m_waveIndexConstants[i].base_horiz_pos;
Eigen::Vector2d amplitude = m_current_h[i];
float height = amplitude[0];
if (iterations++ > 1)
{
if (height < min) min = height;
if (height > max)
{
max = height;
// std::cout << "changed!! max: " << max << std::endl;
}
}
// Eigen::Vector2d slope = m_slopes[i] * .3f;
// Eigen::Vector3f s = Eigen::Vector3f(-slope[0], 0.0, -slope[1]);
// Eigen::Vector3f y = Eigen::Vector3f(0.0, 1.0, 0.0);
// float xs = 1.f + s[0]*s[0];
// float ys = 1.f + s[1]*s[1];
// float zs = 1.f + s[2]*s[2];
//
// Eigen::Vector3f diff = y - s;
// Eigen::Vector3f Eigen::Vector3f(diff[0]/ sqrt(xs), diff[1]/ sqrt(ys), diff[2]/sqrt(zs));
// NEW
Eigen::Vector3f norm = Eigen::Vector3f(-m_slopes_x[i][0], 1.0, -m_slopes_z[i][0]);
norm = norm.normalized(); // FIXME: why do I have to be inverted?
//if (i==6) std::cout << amplitude[0] << std::endl;
// calculate displacement
// Eigen::Vector2d disp = lambda*m_displacements[i];
Eigen::Vector2d disp = lambda*Eigen::Vector2d(m_displacements_x[i][0], m_displacements_z[i][0])
+ Eigen::Vector2d(vertex_displacement, vertex_displacement); // set corner at 0,0 for retiling
Eigen::Vector3f v = Eigen::Vector3f(horiz_pos[0] + disp[0], height, horiz_pos[1] + disp[1]);
// for final vertex position, use the real number component of amplitude vector
m_vertices[i] = v;
m_normals[i] = norm.normalized();//Eigen::Vector3f(-slope[0], 1.0, -slope[1]).normalized();
//std::cout << "normal: " << m_normals[i] << std::endl
Eigen::Vector2i m_n = index_1d_to_2d(i);
// m_foam_constants.wavelengths[i] = 2.f* M_PI * m_slopes[i].dot(m_slopes[i]) / Lx;
// float h_0 = m_waveIndexConstants[i].h0_prime[0]; // min*.2f;
// float h_max = max*.001f; // the smaller the constant, the more foam there is
// float waveheight = (height - h_0 ) / (h_max - h_0);
// m_foam_constants.wavelengths[i] = waveheight;
float h_0 = 0; // min*.2f;
float h_max = max*.25f; // the smaller the constant, the more foam there is
m_foam_constants.wavelengths[i] = (height - h_0 ) / (h_max - h_0);
// if (i < 5){
// std::cout << h_0 << ", " << h_max << std::endl;
// std::cout << m_foam_constants.wavelengths[i] << std::endl;
// }
if (m_foam_constants.wavelengths[i] >= height_threshold){
//std::cout << "push" << std::endl;
OceanSpray s;
s.height = v;
s.slope = norm;
s.slope_vector = Eigen::Vector2f(m_slopes_x[i][0], m_slopes_z[i][0]);
//std::cout << s.slope_vector << std::endl;
m_heights.push_back(s);
}
}
// populate foam constants
m_foam_constants.positions = vertices;
}
std::vector<float> ocean_alt::get_tiled_wavelengths(){
std::vector<float> wavelengths = std::vector<float>();
for (int i = 0; i < num_tiles_x; i++)
{
for (int j = 0; j < num_tiles_z; j++)
{
for (int k = 0; k < N; k++)
{
wavelengths.push_back(m_foam_constants.wavelengths[k]);
}
}
}
return wavelengths;
}
std::vector<Eigen::Vector2f> ocean_alt::get_tiled_k_vectors(){
std::vector<Eigen::Vector2f> k_vectors = std::vector<Eigen::Vector2f>();
for (int i = 0; i < num_tiles_x; i++)
{
for (int j = 0; j < num_tiles_z; j++)
{
for (int k = 0; k < N; k++)
{
k_vectors.push_back(m_foam_constants.k_vectors[k]);
}
}
}
return k_vectors;
}
std::vector<Eigen::Vector3f> ocean_alt::get_vertices(){
// extend the returned array based on the tilecount
std::vector<Eigen::Vector3f> vertices = std::vector<Eigen::Vector3f>();
for (int i = 0; i < num_tiles_x; i++)
{
for (int j = 0; j < num_tiles_z; j++)
{
for (int k = 0; k < N; k++)
{
double c = Lx - 2 / (num_rows / Lx); // FIXME: when I am not perfect
Eigen::Vector3f vertex = m_vertices[k] + Eigen::Vector3f(-i*(c), 0.0, (j)*(c));
vertices.push_back(vertex);
// std::cout << "vertex: " << vertex << std::endl;
}
}
}
return vertices;
}
std::vector<Eigen::Vector3f> ocean_alt::getNormals(){
// based on the tile count, add more to the normals
std::vector<Eigen::Vector3f> normals = std::vector<Eigen::Vector3f>();
// do the x 1D direction first
for (int i = 0; i < num_tiles_x; i++)
{
for (int j = 0; j < num_tiles_z; j++)
{
for (int k = 0; k < N; k++)
{
normals.push_back(m_normals[k]);
}
}
}
return normals;
}
std::vector<Eigen::Vector3i> ocean_alt::get_faces()
{
// connect the vertices into faces
std::vector<Eigen::Vector3i> faces = std::vector<Eigen::Vector3i>();
for (int i = 0; i < num_tiles_x; i++)
{
for (int j = 0; j < num_tiles_z; j++)
{
for (int k = 0; k < N; k++)
{
int x = k / num_rows;
int z = k % num_rows;
// connect the vertices into faces
if (x < num_rows - 1 && z < num_cols - 1)
{
int tile_index_offset = (j + num_tiles_z * i) * N;
int i1 = k + tile_index_offset;
int i2 = k + 1 + tile_index_offset;
int i3 = k + num_rows + tile_index_offset;
int i4 = k + num_rows + 1 + tile_index_offset;
faces.emplace_back(i2, i1, i3);
faces.emplace_back(i2, i3, i4);
}
}
}
}
return faces;
// for (int i = 0; i < N; i++)
// {
// int x = i / num_rows;
// int z = i % num_rows;
//
// // connect the vertices into faces
// if (x < num_rows - 1 && z < num_cols - 1)
// {
// int i1 = i;
// int i2 = i + 1;
// int i3 = i + num_rows;
// int i4 = i + num_rows + 1;
//
// faces.emplace_back(i2, i1, i3);
// faces.emplace_back(i2, i3, i4);
// faces.emplace_back(i1, i2, i3);
// faces.emplace_back(i3, i2, i4);
// }
// }
// return faces;
}
Eigen::Vector2d muliply_complex(Eigen::Vector2d a, Eigen::Vector2d b)
{
double real = a[0] * b[0] - a[1] * b[1];
double imag = a[0] * b[1] + a[1] * b[0];
return Eigen::Vector2d(real, imag);
}
std::vector<Eigen::Vector2d> ifft_1d
(
std::vector<Eigen::Vector2d> frequencies,
bool is_vertical
)
{
// one D case, assuming is a square
int N = frequencies.size();
// make two buffers for intermediate butterfly values
std::vector<Eigen::Vector2d> buffer1 = std::vector<Eigen::Vector2d>(N);
std::vector<Eigen::Vector2d> buffer2 = std::vector<Eigen::Vector2d>(N);
// fill buffer one with the frequencies in bit reverse order
int log2_N = log2(N);
for (int i = 0; i < N; i++)
{
int reversed = 0;
for (int j = 0; j < log2_N; j++)
{
reversed |= ((i >> j) & 1) << (log2_N - 1 - j);
}
// std::cout << "reversed, i: " << reversed << ", " << i << std::endl;
buffer1[i] = frequencies[reversed];
}
bool reading_buffer1 = true;
// go over the stages
for (int stage = 1; stage <= log2_N; stage++)
{
// go over the groups
for (int group = 0; group < N / pow(2, stage); group++)
{
// go over the butterflies
for (int butterfly = 0; butterfly < pow(2, stage - 1); butterfly++)
{
// calculate the indices
int index1 = group * pow(2, stage) + butterfly;
int index2 = group * pow(2, stage) + pow(2, stage - 1) + butterfly;
// calculate the twiddle factor
int index = group * pow(2, stage) + butterfly;
float w = -index * 2 * M_PI / pow(2, stage);
Eigen::Vector2d twiddle_factor = {cos(w), sin(w)};
if (reading_buffer1)
{
buffer2[index1] = buffer1[index1] + muliply_complex(twiddle_factor, buffer1[index2]);
buffer2[index2] = buffer1[index1] - muliply_complex(twiddle_factor, buffer1[index2]);
}
else
{
buffer1[index1] = buffer2[index1] + muliply_complex(twiddle_factor, buffer2[index2]);
buffer1[index2] = buffer2[index1] - muliply_complex(twiddle_factor, buffer2[index2]);
}
}
}
reading_buffer1 = !reading_buffer1;
}
// return the buffer that was read last
if (reading_buffer1)
{
return buffer1;
}
else
{
return buffer2;
}
}
std::vector<Eigen::Vector2d> ocean_alt::fast_fft
(
std::vector<Eigen::Vector2d> h
)
{
// do a vertical fft on each column
for (int i = 0; i < num_rows; i++)
{
std::vector<Eigen::Vector2d> col = std::vector<Eigen::Vector2d>();
for (int j = 0; j < num_cols; j++)
{
col.push_back(h[i + j * num_rows]);
}
std::vector<Eigen::Vector2d> col_fft = ifft_1d(col, true);
for (int j = 0; j < num_cols; j++)
{
h[i + j * num_rows] = col_fft[j];
}
}
// do a horizontal fft on each row
for (int i = 0; i < num_cols; i++)
{
std::vector<Eigen::Vector2d> row = std::vector<Eigen::Vector2d>();
for (int j = 0; j < num_rows; j++)
{
row.push_back(h[i * num_rows + j]);
}
std::vector<Eigen::Vector2d> row_fft = ifft_1d(row, false);
for (int j = 0; j < num_rows; j++)
{
h[i * num_rows + j] = row_fft[j];
}
}
// divide by N*N and add the signs based on the indices
double sign[] = {1.0, -1.0};
for (int i = 0; i < N; i++)
{
h[i] /= N;
// h[i] /= sqrt(N);
h[i] *= sign[(i / num_rows + i % num_cols) % 2];
}
return h;
}
|