summaryrefslogtreecommitdiff
path: root/src/ocean/ocean_alt.cpp
blob: dfb474c8eb511db4a6d7192ddb3682f40e112858 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#include "ocean_alt.h"
#include <iostream>


ocean_alt::ocean_alt()
{
    // to be used for efficiency during fft
    std::cout << "hello" << std::endl;
    init_wave_index_constants();

}

// initializes static constants (aka they are not time dependent)
void ocean_alt::init_wave_index_constants(){

    for (int i=0; i<N; i++){
        Eigen::Vector2i m_n = index_1d_to_2d(i);
        int n_prime = m_n[0];
        int m_prime = m_n[1];

        Eigen::Vector2d k = get_k_vector(n_prime, m_prime);
        Eigen::Vector2d k_conj = get_k_vector(-n_prime, m_prime);


        // store h0'(n,m) and w'(n,m) for every index, to be used for later
        Eigen::Vector2d h0_prime = h_0_prime(k);

        // conjugate of a+bi is a-bi
        Eigen::Vector2d h0_prime_conj = h_0_prime(k_conj);
        h0_prime_conj = Eigen::Vector2d(h0_prime_conj[0], -h0_prime_conj[1]);

        double w_prime = omega_prime(k);

        // populate map to be used for later
        WaveIndexConstant wave_const;
        wave_const.h0_prime = h0_prime;
        wave_const.h0_prime_conj = h0_prime_conj;
        wave_const.w_prime = w_prime;
        wave_const.w_prime = w_prime;
        wave_const.base_horiz_pos = get_horiz_pos(i);
        wave_const.k_vector = k;

        m_waveIndexConstants[i] = wave_const;

        // initialize m_current_h to be h0 for now
        m_current_h.push_back(h0_prime);
        m_displacements.push_back(Eigen::Vector2d(0.0, 0.0));
        m_slopes.push_back(Eigen::Vector2d(0.0, 0.0));
        m_normals.push_back(Eigen::Vector3f(0.0, 1.0, 0.0));

    }
}

// fast fourier transform at time t
void ocean_alt::fft_prime(double t){

    // FFT
    std::vector<Eigen::Vector2d> h_tildas = std::vector<Eigen::Vector2d>();

    // find each h_tilda at each index, to be used for next for loop
    for (int i=0; i<N; i++){
        Eigen::Vector2d h_t_prime = h_prime_t(i, t); // vector(real, imag)

        h_tildas.emplace_back(h_t_prime);
    }

	bool fast = false;
	if (fast)
	{
		std::vector<Eigen::Vector2d> tmp = fast_fft(h_tildas);
		for (int i = 0; i < N; i++)
		{
			m_current_h[i] = tmp[i];

			// update displacements and slopes
			Eigen::Vector2d k_vector = m_waveIndexConstants[i].k_vector;
			Eigen::Vector2d k_normalized = k_vector.normalized();

			double imag_comp = m_current_h[i][1];
			m_displacements[i] += k_normalized*imag_comp;
			m_slopes[i] += k_vector*imag_comp;
		}

		return;
	}

    // for each position in grid, sum up amplitudes dependng on that position
    for (int i=0; i<N; i++){
        Eigen::Vector2d x_vector = m_waveIndexConstants[i].base_horiz_pos;
        m_current_h[i] = Eigen::Vector2d(0.0, 0.0);
        m_displacements[i] = Eigen::Vector2d(0.0, 0.0);
        m_slopes[i] = Eigen::Vector2d(0.0, 0.0);



        for (int j = 0; j < N; j++){
            Eigen::Vector2d k_vector = m_waveIndexConstants[j].k_vector;
            Eigen::Vector2d h_tilda_prime = h_tildas[j]; // vector(real, imag)


            // add x vector and k vector as imaginary numbers
            double imag_xk_sum = x_vector.dot(k_vector);
            Eigen::Vector2d exp = complex_exp(-imag_xk_sum); // vector(real, imag)

            double real_comp = h_tilda_prime[0]*exp[0] - h_tilda_prime[1]*exp[1];
            double imag_comp = h_tilda_prime[0]*exp[1] + h_tilda_prime[1]*exp[0];

            m_current_h[i] += Eigen::Vector2d(real_comp, imag_comp);

            Eigen::Vector2d k_normalized = k_vector.normalized();

            m_displacements[i] += k_normalized*imag_comp;
            m_slopes[i] += k_vector*imag_comp;
        }
    }

}

// time dependent calculation of h'(n,m,t)
Eigen::Vector2d ocean_alt::h_prime_t(int i, double t){
    Eigen::Vector2d h0_prime = m_waveIndexConstants[i].h0_prime; // vector(real, imag)
    Eigen::Vector2d h0_prime_conj = m_waveIndexConstants[i].h0_prime_conj; // vector(real, imag)
    double w_prime = m_waveIndexConstants[i].w_prime;

    Eigen::Vector2d pos_complex_exp = complex_exp(w_prime*t); // vector(real, imag)
    Eigen::Vector2d neg_complex_exp = complex_exp(-w_prime*t); // vector(real, imag)

    // now multiply our four vector(real, imag) out

    double real_comp =
            h0_prime[0]*pos_complex_exp[0]
            - h0_prime[1]*pos_complex_exp[1]
            + h0_prime_conj[0]*neg_complex_exp[0]
            + h0_prime_conj[1]*neg_complex_exp[1];

    double imag_comp =
            h0_prime[0]*pos_complex_exp[1]
            + h0_prime[1]*pos_complex_exp[0]
            + h0_prime_conj[0]*neg_complex_exp[1]
            - h0_prime_conj[1]*neg_complex_exp[0];



    return Eigen::Vector2d(real_comp, imag_comp);
}

double ocean_alt::omega_prime(Eigen::Vector2d k){
    // calculate omega^4 first to prevent sqrts
    double w = sqrt(gravity*k.norm());

    return w;
}

Eigen::Vector2d ocean_alt::h_0_prime(Eigen::Vector2d k){
    double Ph_prime = phillips_prime(k);
    std::pair<double,double> randoms = sample_complex_gaussian();
    double random_r = randoms.first;
    double random_i = randoms.second;

    // seperate real and imag products
    double coeff = 0.707106781187 * sqrt(Ph_prime);
    double real_comp = coeff*random_r;
    double imag_comp = coeff*random_i;

    return Eigen::Vector2d(real_comp, imag_comp);
}


double ocean_alt::phillips_prime(Eigen::Vector2d k){
    double k_mag = k.norm();

    k.normalize();
    double dot_prod = k.dot(omega_wind);

    double output = 0.0;
    // l = 1
    if (k_mag < .0001) return 0.0;

    if (k_mag > 1.0){

       output =  A*exp(-(k_mag*k_mag))*dot_prod*dot_prod/(k_mag*k_mag*k_mag*k_mag);
    } else {
       output =  A*exp(-1.0/(k_mag*L*k_mag*L))*dot_prod*dot_prod/(k_mag*k_mag*k_mag*k_mag);

    }



    return output;
}

Eigen::Vector2d ocean_alt::get_k_vector(int n_prime, int m_prime){
    double n_ = (double)n_prime;
    double m_ = (double)m_prime;
    double N_ = (double)num_rows;
    double M_ = (double)num_cols;

    double k_x = (2.0*M_PI*n_ - M_PI*N_)/Lx;
    double k_z = (2.0*M_PI*m_ - M_PI*M_)/Lz;

    return Eigen::Vector2d(k_x, k_z);
}

Eigen::Vector2d ocean_alt::get_horiz_pos(int i){
    Eigen::Vector2i m_n = index_1d_to_2d(i);
    double n_prime = (double)m_n[0];
    double m_prime = (double)m_n[1];
    double N_ = (double)num_rows;
    double M_ = (double)num_cols;


    double x = (n_prime-.5*N_)*Lx / N_;
    double z = (m_prime-.5*M_)*Lz / M_;



    return Eigen::Vector2d(x, z);
}


Eigen::Vector2i ocean_alt::index_1d_to_2d(int i){
    int row = i/num_rows; // n'
    int col = i%num_rows; // m'

    return Eigen::Vector2i(row, col);

}

std::pair<double,double> ocean_alt::sample_complex_gaussian(){
    double uniform_1 = (double)rand() / (RAND_MAX);
    double uniform_2 = (double)rand() / (RAND_MAX);

    // set a lower bound on zero to avoid undefined log(0)
    if (uniform_1 == 0)
    {
        uniform_1 = 1e-10;
    }
    if (uniform_2 == 0)
    {
        uniform_2 = 1e-10;
    }

    // real and imaginary parts of the complex number
    double real = sqrt(-2 * log(uniform_1)) * cos(2 * M_PI * uniform_2);
    double imag = sqrt(-2 * log(uniform_1)) * sin(2 * M_PI * uniform_2);

    return std::make_pair(real, imag);
}

Eigen::Vector2d ocean_alt::complex_exp(double exponent){
    double real = cos(exponent);
    double imag = sin(exponent);

    return Eigen::Vector2d(real, imag);
}

std::vector<Eigen::Vector3f> ocean_alt::get_vertices()
{
    std::vector<Eigen::Vector3f> vertices = std::vector<Eigen::Vector3f>();
    for (int i = 0; i < N; i++){
        Eigen::Vector2d horiz_pos = spacing*m_waveIndexConstants[i].base_horiz_pos;
        Eigen::Vector2d amplitude = m_current_h[i];
        float height = amplitude[0];

        Eigen::Vector2d slope = m_slopes[i] * .3f;
        Eigen::Vector3f s = Eigen::Vector3f(-slope[0], 0.0, -slope[1]);
        Eigen::Vector3f y = Eigen::Vector3f(0.0, 1.0, 0.0);

        float xs = 1.f + s[0]*s[0];
        float ys = 1.f + s[1]*s[1];
        float zs = 1.f + s[2]*s[2];

        Eigen::Vector3f diff = y - s;
        Eigen::Vector3f norm = Eigen::Vector3f(diff[0]/ sqrt(xs), diff[1]/ sqrt(ys), diff[2]/sqrt(zs));





        //if (i==6) std::cout << amplitude[0] << std::endl;

        // calculate displacement
        Eigen::Vector2d disp = lambda*m_displacements[i];

        //


        // for final vertex position, use the real number component of amplitude vector
        vertices.push_back(Eigen::Vector3f(horiz_pos[0] + disp[0], height, horiz_pos[1] + disp[1]));
        m_normals[i] = norm.normalized();//Eigen::Vector3f(-slope[0], 1.0, -slope[1]).normalized();
        //std::cout << "normal: " << m_normals[i] << std::endl;

    }
    return vertices;
}

std::vector<Eigen::Vector3f> ocean_alt::getNormals(){
    return m_normals;
}

std::vector<Eigen::Vector3i> ocean_alt::get_faces()
{
    // connect the vertices into faces
    std::vector<Eigen::Vector3i> faces = std::vector<Eigen::Vector3i>();
    for (int i = 0; i < N; i++)
    {
        int x = i / num_rows;
        int z = i % num_rows;

        // connect the vertices into faces
        if (x < num_rows - 1 && z < num_cols - 1)
        {
            int i1 = i;
            int i2 = i + 1;
            int i3 = i + num_rows;
            int i4 = i + num_rows + 1;

            faces.emplace_back(i2, i1, i3);
            faces.emplace_back(i2, i3, i4);
                        faces.emplace_back(i1, i2, i3);
                        faces.emplace_back(i3, i2, i4);
        }
    }
    return faces;
}

std::vector<Eigen::Vector2d> ocean_alt::fast_fft
	(
		std::vector<Eigen::Vector2d> h
	)
{
	int N = h.size();
	int exponent = 0;
	int power_of_2 = 1;
	while (power_of_2 < N)
	{
		power_of_2 *= 2;
		exponent++;
	}

	std::vector<Eigen::Vector2d> H = std::vector<Eigen::Vector2d>(N);
	// pad with zeros
	for (int i = 0; i < N; i++)
	{
		H[i] = h[i];
	}
	for (int i = N; i < power_of_2; i++)
	{
		H.emplace_back(Eigen::Vector2d(0.0, 0.0));
	}

	// bit reverse the indices of the input data array
	std::vector<Eigen::Vector2d> temp = std::vector<Eigen::Vector2d>(power_of_2);
	for (int i = 0; i < power_of_2; i++)
	{
		int j = 0;
		for (int k = 0; k < exponent; k++)
		{
			j = (j << 1) | (i >> k & 1);
		}
		temp[j] = H[i];
	}
	for (int i = 0; i < power_of_2; i++)
	{
		H[i] = temp[i];
	}

	// outer loop through levels i->p of even-odd decompositions, beginning with the final decompositions
	// where individual y_m are used through the first decomposition where Y_n^e and Y_n^o are involved
	for (int i = 1; i <= exponent; i++)
	{

		// nested middle loop where each level is grouped into terms according to values of k in the factor
		// W_N^k = e^(-2*pi*i*k/N) appearing in each sum
		int N_over_2 = 1 << i;
		int N_over_4 = 1 << (i - 1);
		double theta = 2 * M_PI / N_over_2;
		Eigen::Vector2d W_N = Eigen::Vector2d(cos(theta), -sin(theta));
		Eigen::Vector2d W = Eigen::Vector2d(1.0, 0.0);
		for (int k = 0; k < N_over_4; k++)
		{
			// innermost loop where each group is split into individual sums
			for (int j = k; j < power_of_2; j += N_over_2)
			{
				Eigen::Vector2d U = H[j];
				Eigen::Vector2d V = H[j + N_over_4];
				H[j] = U + W[0] * V - W[1] * V;
				H[j + N_over_4] = U - (W[0] * V - W[1] * V);
			}
			W = W[0] * W_N - W[1] * W_N;
		}
	}

	return H;
}