1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
M = 10
m = 1 # mass of particles
function calculate_force(
left_pos,
middle_pos,
right_pos,
K,
alpha = 0.0,
beta = 1000.0,
)
linear_force = K * (left_pos + right_pos - 2 * middle_pos)
quadratic_force = alpha * (left_pos - middle_pos)^2 + alpha * (right_pos - middle_pos)^2
cubic_force = beta * (left_pos - middle_pos)^3 + beta * (right_pos - middle_pos)^3
return linear_force + quadratic_force + cubic_force
end
function tendency!(du, u, p, t)
# unpack the params
N, K, m = p
# get the positions and momenta
qs = u[1:2:end]
ps = u[2:2:end]
# go over the points in the lattice and update the state
for i in 1:N-1
mass = m
if i == Int(N / 2)
mass = M
end
left_index = max(1, i - 1)
right_index = min(N, i + 1)
du[i*2-1] = ps[i] / mass
force = calculate_force(qs[left_index], qs[i], qs[right_index], K)
du[i*2] = force / mass
end
# make last point same as first
du[N*2-1] = du[1] = 0 # set to 0
du[N*2] = du[2] = 0
if t % 100000 == 0
println("TIME UPDATE: ", t)
end
# if ps[Int(N / 2)] / M >= 1
# println("(in sim!) Time: ", t, " Vel: ", ps[Int(N / 2)] / M)
# # println("Other Positions: ", qs)
# println("Other Velocities: ", ps, "\n")
# end
end
function get_initial_state(
N,
initial_displacement = 2,
initial_velocity = 0,
)
state = zeros(2 * N)
middle_index = 2 * Int(N / 2) - 1 # middle mass
state[middle_index] = initial_displacement
state[middle_index+1] = initial_velocity * M
return state
end
using DifferentialEquations
function run_simulation(
N,
K,
m,
final_time,
initial_displacement = 2,
initial_velocity = 0,
)
println("Running simulation with N = $N, K = $K, m = $m, final_time = $final_time, initial_displacement = $initial_displacement, initial_velocity = $initial_velocity\n")
s_0 = get_initial_state(N, initial_displacement, initial_velocity)
calculate_energy(s_0)
# pack the params
p = N, K, m
t_span = (0.0, final_time)
prob = ODEProblem(tendency!, s_0, t_span, p)
sol = solve(prob, Tsit5(), reltol = 1e-5, abstol = 1e-5, maxiters = 1e10) # control simulation
calculate_energy(sol.u[end])
println("Done Running Sim!\n\n")
return sol
end
using Plots
function animate_positions(
states,
time_steps,
time_min = 0,
time_max = 30,
red_threshold = 2,
shift = true,
)
println("Animating positions")
anim = @animate for i in 1:length(time_steps)
t = time_steps[i]
if t < time_min
continue
end
if t > time_max
break
end
positions = states[i][1:2:end]
v_middle = states[i][Int(length(states[1]) / 2)] / M
p_middle = states[i][Int(length(states[1]) / 2)-1]
y_lims = shift ? (-3 + p_middle, 3 + p_middle) : (-3, 3)
# plot(positions, label = "t = $(round(t, digits = 3)), v_middle=$(round(v_middle, digits=3))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = (-3, 3))
if v_middle >= red_threshold
plot(positions, label = "t = $(round(t, digits = 7)), v_middle=$(round(v_middle, digits=7))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = y_lims,
color = :red, legend = :topright,
)
else
plot(positions, label = "t = $(round(t, digits = 7)), v_middle=$(round(v_middle, digits=7))", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", ylim = y_lims,
color = :blue, legend = :topright,
)
end
end
mp4(anim, "t/animate-positions.mp4", fps = 30)
println("Done animating positions")
end
function plot_starting_and_final_positions(
states,
time_steps,
)
# plot the positions
middle_index = Int(length(states[1]) / 2) - 1
pos_init = [x - states[1][middle_index] for x in states[1][1:2:end]]
pos_final = [x - states[end][middle_index] for x in states[end][1:2:end]]
p1 = plot(pos_init, label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Displacement", title = "Positions Over Time")
plot!(p1, pos_final, label = "Final", marker = :circle)
# plot the vels
vels_init = [x / M for x in states[1][2:2:end]]
vels_final = [x / M for x in states[end][2:2:end]]
p2 = plot(states[1][2:2:end], label = "Initial", marker = :circle, xlabel = "Mass Number", ylabel = "Velocity", title = "Velocities Over Time")
plot!(p2, states[end][2:2:end], label = "Final t = $(time_steps[end])", marker = :circle)
# save the plots
savefig(p1, "t/initial-final-positions.png")
savefig(p2, "t/initial-final-velocities.png")
end
function analyize_vels(
states,
time_steps,
threshold = 1.975,
)
println("Analyzing velocities:\n")
output = []
for i in 1:length(states)
v = states[i][Int(length(states[i]) / 2)] / M
if v >= threshold - 10e-6
push!(output, i)
println("Time: ", time_steps[i], " Vel: ", v)
end
end
data = []
for i in 1:length(states)
push!(data, states[i][Int(length(states[i]) / 2)])
end
p = plot(data, label = "Velocity Over Time", xlabel = "Time", ylabel = "Velocity")
savefig(p, "t/velocity-over-time.png")
println("\nDone!\n\n")
return output
end
function analyize_pos(
states,
time_steps,
threshold = 1.975,
)
println("Analyzing positions:\n")
output = []
for i in 1:length(states)
if states[i][Int(length(states[i]) / 2)-1] >= threshold
push!(output, i)
println("Time: ", time_steps[i], " Position: ", states[i][Int(length(states[i]) / 2)])
end
end
# plot the first 10 seconds of Velocity
data = []
for i in 1:length(states)
if time_steps[i] > 10
break
end
push!(data, states[i][Int(length(states[i]) / 2)] - 1)
end
p = plot(data, label = "Position Over Time", xlabel = "Time", ylabel = "Position")
savefig(p, "t/pos-over-time.png")
println("\nDone!\n\n")
return output
end
function calculate_energy(state)
# calculate the kinetic energy
kinetic_energy = 0
vels = state[2:2:end]
for i in 1:N
mass = i == Int(N / 2) - 1 ? M : m
# calculate the kinetic energy
kinetic_energy += 0.5 * vels[i] * vels[i] / mass
end
# calcaute the potential energy
potential_energy = 0
pos = state[1:2:end]
for i in 1:N-1
left_index = max(1, i - 1)
right_index = min(N, i + 1)
potential_energy += 0.5 * K * (pos[left_index] - pos[i])^2
potential_energy += 0.5 * K * (pos[right_index] - pos[i])^2
end
# print the energy
println("Kinetic Energy: ", kinetic_energy)
println("Potential Energy: ", potential_energy)
println("Total Energy: ", kinetic_energy + potential_energy, "\n")
end
function plot_middle_mass_phase_space(states)
# get the index of the middle mass
middle_index = Int(length(states[1]) / 2) - 1
# build an array of the pos and vel over time
pos = []
vel = []
for i in 1:length(states)
push!(pos, states[i][middle_index])
push!(vel, states[i][middle_index+1])
end
# plot the phase space
p = plot(pos, vel, xlabel = "Position", ylabel = "Momentum", title = "Phase Space of Middle Mass in FPU", label = "Beta = 10, K = 1, N = 64, M = $M")
# save the plot
savefig(p, "t/phase-space.png")
end
# Run the simulation
N = 64 # number of masses
K = 1 # spring constant
final_time = 1000 # seconds
plot_data = []
my_vel = 100
sol = run_simulation(N, K, m, final_time, 0, my_vel)
println("final time: ", sol.t[end])
# s = sol.u[1:2:end]
# analyize_vels(sol.u, sol.t, my_vel)
# analyize_pos(sol.u, sol.t, 1.4)
plot_starting_and_final_positions(sol.u, sol.t)
# animate_positions(sol.u, sol.t, 0, 100, my_vel) # expect 80913.35854226245 for k=10?? rip
plot_middle_mass_phase_space(sol.u)
|