summaryrefslogtreecommitdiff
path: root/Eigen/src/SparseCore
diff options
context:
space:
mode:
authorsotech117 <michael_foiani@brown.edu>2024-04-09 03:14:17 -0400
committersotech117 <michael_foiani@brown.edu>2024-04-09 03:14:17 -0400
commit7a8d0d8bc2572707c9d35006f30ea835c86954b0 (patch)
treededb9a65c1698202ad485378b4186b667008abe5 /Eigen/src/SparseCore
parent818324678bd5dca790c57048e5012d2937a4b5e5 (diff)
first draft to generate waves
Diffstat (limited to 'Eigen/src/SparseCore')
-rw-r--r--Eigen/src/SparseCore/AmbiVector.h378
-rw-r--r--Eigen/src/SparseCore/CompressedStorage.h274
-rw-r--r--Eigen/src/SparseCore/ConservativeSparseSparseProduct.h352
-rw-r--r--Eigen/src/SparseCore/MappedSparseMatrix.h67
-rw-r--r--Eigen/src/SparseCore/SparseAssign.h270
-rw-r--r--Eigen/src/SparseCore/SparseBlock.h571
-rw-r--r--Eigen/src/SparseCore/SparseColEtree.h206
-rw-r--r--Eigen/src/SparseCore/SparseCompressedBase.h370
-rw-r--r--Eigen/src/SparseCore/SparseCwiseBinaryOp.h722
-rw-r--r--Eigen/src/SparseCore/SparseCwiseUnaryOp.h150
-rw-r--r--Eigen/src/SparseCore/SparseDenseProduct.h342
-rw-r--r--Eigen/src/SparseCore/SparseDiagonalProduct.h138
-rw-r--r--Eigen/src/SparseCore/SparseDot.h98
-rw-r--r--Eigen/src/SparseCore/SparseFuzzy.h29
-rw-r--r--Eigen/src/SparseCore/SparseMap.h305
-rw-r--r--Eigen/src/SparseCore/SparseMatrix.h1518
-rw-r--r--Eigen/src/SparseCore/SparseMatrixBase.h398
-rw-r--r--Eigen/src/SparseCore/SparsePermutation.h178
-rw-r--r--Eigen/src/SparseCore/SparseProduct.h181
-rw-r--r--Eigen/src/SparseCore/SparseRedux.h49
-rw-r--r--Eigen/src/SparseCore/SparseRef.h397
-rw-r--r--Eigen/src/SparseCore/SparseSelfAdjointView.h659
-rw-r--r--Eigen/src/SparseCore/SparseSolverBase.h124
-rw-r--r--Eigen/src/SparseCore/SparseSparseProductWithPruning.h198
-rw-r--r--Eigen/src/SparseCore/SparseTranspose.h92
-rw-r--r--Eigen/src/SparseCore/SparseTriangularView.h189
-rw-r--r--Eigen/src/SparseCore/SparseUtil.h186
-rw-r--r--Eigen/src/SparseCore/SparseVector.h478
-rw-r--r--Eigen/src/SparseCore/SparseView.h254
-rw-r--r--Eigen/src/SparseCore/TriangularSolver.h315
30 files changed, 9488 insertions, 0 deletions
diff --git a/Eigen/src/SparseCore/AmbiVector.h b/Eigen/src/SparseCore/AmbiVector.h
new file mode 100644
index 0000000..2cb7747
--- /dev/null
+++ b/Eigen/src/SparseCore/AmbiVector.h
@@ -0,0 +1,378 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_AMBIVECTOR_H
+#define EIGEN_AMBIVECTOR_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal
+ * Hybrid sparse/dense vector class designed for intensive read-write operations.
+ *
+ * See BasicSparseLLT and SparseProduct for usage examples.
+ */
+template<typename _Scalar, typename _StorageIndex>
+class AmbiVector
+{
+ public:
+ typedef _Scalar Scalar;
+ typedef _StorageIndex StorageIndex;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ explicit AmbiVector(Index size)
+ : m_buffer(0), m_zero(0), m_size(0), m_end(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
+ {
+ resize(size);
+ }
+
+ void init(double estimatedDensity);
+ void init(int mode);
+
+ Index nonZeros() const;
+
+ /** Specifies a sub-vector to work on */
+ void setBounds(Index start, Index end) { m_start = convert_index(start); m_end = convert_index(end); }
+
+ void setZero();
+
+ void restart();
+ Scalar& coeffRef(Index i);
+ Scalar& coeff(Index i);
+
+ class Iterator;
+
+ ~AmbiVector() { delete[] m_buffer; }
+
+ void resize(Index size)
+ {
+ if (m_allocatedSize < size)
+ reallocate(size);
+ m_size = convert_index(size);
+ }
+
+ StorageIndex size() const { return m_size; }
+
+ protected:
+ StorageIndex convert_index(Index idx)
+ {
+ return internal::convert_index<StorageIndex>(idx);
+ }
+
+ void reallocate(Index size)
+ {
+ // if the size of the matrix is not too large, let's allocate a bit more than needed such
+ // that we can handle dense vector even in sparse mode.
+ delete[] m_buffer;
+ if (size<1000)
+ {
+ Index allocSize = (size * sizeof(ListEl) + sizeof(Scalar) - 1)/sizeof(Scalar);
+ m_allocatedElements = convert_index((allocSize*sizeof(Scalar))/sizeof(ListEl));
+ m_buffer = new Scalar[allocSize];
+ }
+ else
+ {
+ m_allocatedElements = convert_index((size*sizeof(Scalar))/sizeof(ListEl));
+ m_buffer = new Scalar[size];
+ }
+ m_size = convert_index(size);
+ m_start = 0;
+ m_end = m_size;
+ }
+
+ void reallocateSparse()
+ {
+ Index copyElements = m_allocatedElements;
+ m_allocatedElements = (std::min)(StorageIndex(m_allocatedElements*1.5),m_size);
+ Index allocSize = m_allocatedElements * sizeof(ListEl);
+ allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar);
+ Scalar* newBuffer = new Scalar[allocSize];
+ std::memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
+ delete[] m_buffer;
+ m_buffer = newBuffer;
+ }
+
+ protected:
+ // element type of the linked list
+ struct ListEl
+ {
+ StorageIndex next;
+ StorageIndex index;
+ Scalar value;
+ };
+
+ // used to store data in both mode
+ Scalar* m_buffer;
+ Scalar m_zero;
+ StorageIndex m_size;
+ StorageIndex m_start;
+ StorageIndex m_end;
+ StorageIndex m_allocatedSize;
+ StorageIndex m_allocatedElements;
+ StorageIndex m_mode;
+
+ // linked list mode
+ StorageIndex m_llStart;
+ StorageIndex m_llCurrent;
+ StorageIndex m_llSize;
+};
+
+/** \returns the number of non zeros in the current sub vector */
+template<typename _Scalar,typename _StorageIndex>
+Index AmbiVector<_Scalar,_StorageIndex>::nonZeros() const
+{
+ if (m_mode==IsSparse)
+ return m_llSize;
+ else
+ return m_end - m_start;
+}
+
+template<typename _Scalar,typename _StorageIndex>
+void AmbiVector<_Scalar,_StorageIndex>::init(double estimatedDensity)
+{
+ if (estimatedDensity>0.1)
+ init(IsDense);
+ else
+ init(IsSparse);
+}
+
+template<typename _Scalar,typename _StorageIndex>
+void AmbiVector<_Scalar,_StorageIndex>::init(int mode)
+{
+ m_mode = mode;
+ // This is only necessary in sparse mode, but we set these unconditionally to avoid some maybe-uninitialized warnings
+ // if (m_mode==IsSparse)
+ {
+ m_llSize = 0;
+ m_llStart = -1;
+ }
+}
+
+/** Must be called whenever we might perform a write access
+ * with an index smaller than the previous one.
+ *
+ * Don't worry, this function is extremely cheap.
+ */
+template<typename _Scalar,typename _StorageIndex>
+void AmbiVector<_Scalar,_StorageIndex>::restart()
+{
+ m_llCurrent = m_llStart;
+}
+
+/** Set all coefficients of current subvector to zero */
+template<typename _Scalar,typename _StorageIndex>
+void AmbiVector<_Scalar,_StorageIndex>::setZero()
+{
+ if (m_mode==IsDense)
+ {
+ for (Index i=m_start; i<m_end; ++i)
+ m_buffer[i] = Scalar(0);
+ }
+ else
+ {
+ eigen_assert(m_mode==IsSparse);
+ m_llSize = 0;
+ m_llStart = -1;
+ }
+}
+
+template<typename _Scalar,typename _StorageIndex>
+_Scalar& AmbiVector<_Scalar,_StorageIndex>::coeffRef(Index i)
+{
+ if (m_mode==IsDense)
+ return m_buffer[i];
+ else
+ {
+ ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
+ // TODO factorize the following code to reduce code generation
+ eigen_assert(m_mode==IsSparse);
+ if (m_llSize==0)
+ {
+ // this is the first element
+ m_llStart = 0;
+ m_llCurrent = 0;
+ ++m_llSize;
+ llElements[0].value = Scalar(0);
+ llElements[0].index = convert_index(i);
+ llElements[0].next = -1;
+ return llElements[0].value;
+ }
+ else if (i<llElements[m_llStart].index)
+ {
+ // this is going to be the new first element of the list
+ ListEl& el = llElements[m_llSize];
+ el.value = Scalar(0);
+ el.index = convert_index(i);
+ el.next = m_llStart;
+ m_llStart = m_llSize;
+ ++m_llSize;
+ m_llCurrent = m_llStart;
+ return el.value;
+ }
+ else
+ {
+ StorageIndex nextel = llElements[m_llCurrent].next;
+ eigen_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
+ while (nextel >= 0 && llElements[nextel].index<=i)
+ {
+ m_llCurrent = nextel;
+ nextel = llElements[nextel].next;
+ }
+
+ if (llElements[m_llCurrent].index==i)
+ {
+ // the coefficient already exists and we found it !
+ return llElements[m_llCurrent].value;
+ }
+ else
+ {
+ if (m_llSize>=m_allocatedElements)
+ {
+ reallocateSparse();
+ llElements = reinterpret_cast<ListEl*>(m_buffer);
+ }
+ eigen_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in sparse mode");
+ // let's insert a new coefficient
+ ListEl& el = llElements[m_llSize];
+ el.value = Scalar(0);
+ el.index = convert_index(i);
+ el.next = llElements[m_llCurrent].next;
+ llElements[m_llCurrent].next = m_llSize;
+ ++m_llSize;
+ return el.value;
+ }
+ }
+ }
+}
+
+template<typename _Scalar,typename _StorageIndex>
+_Scalar& AmbiVector<_Scalar,_StorageIndex>::coeff(Index i)
+{
+ if (m_mode==IsDense)
+ return m_buffer[i];
+ else
+ {
+ ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
+ eigen_assert(m_mode==IsSparse);
+ if ((m_llSize==0) || (i<llElements[m_llStart].index))
+ {
+ return m_zero;
+ }
+ else
+ {
+ Index elid = m_llStart;
+ while (elid >= 0 && llElements[elid].index<i)
+ elid = llElements[elid].next;
+
+ if (llElements[elid].index==i)
+ return llElements[m_llCurrent].value;
+ else
+ return m_zero;
+ }
+ }
+}
+
+/** Iterator over the nonzero coefficients */
+template<typename _Scalar,typename _StorageIndex>
+class AmbiVector<_Scalar,_StorageIndex>::Iterator
+{
+ public:
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ /** Default constructor
+ * \param vec the vector on which we iterate
+ * \param epsilon the minimal value used to prune zero coefficients.
+ * In practice, all coefficients having a magnitude smaller than \a epsilon
+ * are skipped.
+ */
+ explicit Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0)
+ : m_vector(vec)
+ {
+ using std::abs;
+ m_epsilon = epsilon;
+ m_isDense = m_vector.m_mode==IsDense;
+ if (m_isDense)
+ {
+ m_currentEl = 0; // this is to avoid a compilation warning
+ m_cachedValue = 0; // this is to avoid a compilation warning
+ m_cachedIndex = m_vector.m_start-1;
+ ++(*this);
+ }
+ else
+ {
+ ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
+ m_currentEl = m_vector.m_llStart;
+ while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon)
+ m_currentEl = llElements[m_currentEl].next;
+ if (m_currentEl<0)
+ {
+ m_cachedValue = 0; // this is to avoid a compilation warning
+ m_cachedIndex = -1;
+ }
+ else
+ {
+ m_cachedIndex = llElements[m_currentEl].index;
+ m_cachedValue = llElements[m_currentEl].value;
+ }
+ }
+ }
+
+ StorageIndex index() const { return m_cachedIndex; }
+ Scalar value() const { return m_cachedValue; }
+
+ operator bool() const { return m_cachedIndex>=0; }
+
+ Iterator& operator++()
+ {
+ using std::abs;
+ if (m_isDense)
+ {
+ do {
+ ++m_cachedIndex;
+ } while (m_cachedIndex<m_vector.m_end && abs(m_vector.m_buffer[m_cachedIndex])<=m_epsilon);
+ if (m_cachedIndex<m_vector.m_end)
+ m_cachedValue = m_vector.m_buffer[m_cachedIndex];
+ else
+ m_cachedIndex=-1;
+ }
+ else
+ {
+ ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
+ do {
+ m_currentEl = llElements[m_currentEl].next;
+ } while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon);
+ if (m_currentEl<0)
+ {
+ m_cachedIndex = -1;
+ }
+ else
+ {
+ m_cachedIndex = llElements[m_currentEl].index;
+ m_cachedValue = llElements[m_currentEl].value;
+ }
+ }
+ return *this;
+ }
+
+ protected:
+ const AmbiVector& m_vector; // the target vector
+ StorageIndex m_currentEl; // the current element in sparse/linked-list mode
+ RealScalar m_epsilon; // epsilon used to prune zero coefficients
+ StorageIndex m_cachedIndex; // current coordinate
+ Scalar m_cachedValue; // current value
+ bool m_isDense; // mode of the vector
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_AMBIVECTOR_H
diff --git a/Eigen/src/SparseCore/CompressedStorage.h b/Eigen/src/SparseCore/CompressedStorage.h
new file mode 100644
index 0000000..acd986f
--- /dev/null
+++ b/Eigen/src/SparseCore/CompressedStorage.h
@@ -0,0 +1,274 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPRESSED_STORAGE_H
+#define EIGEN_COMPRESSED_STORAGE_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal
+ * Stores a sparse set of values as a list of values and a list of indices.
+ *
+ */
+template<typename _Scalar,typename _StorageIndex>
+class CompressedStorage
+{
+ public:
+
+ typedef _Scalar Scalar;
+ typedef _StorageIndex StorageIndex;
+
+ protected:
+
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ public:
+
+ CompressedStorage()
+ : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
+ {}
+
+ explicit CompressedStorage(Index size)
+ : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
+ {
+ resize(size);
+ }
+
+ CompressedStorage(const CompressedStorage& other)
+ : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
+ {
+ *this = other;
+ }
+
+ CompressedStorage& operator=(const CompressedStorage& other)
+ {
+ resize(other.size());
+ if(other.size()>0)
+ {
+ internal::smart_copy(other.m_values, other.m_values + m_size, m_values);
+ internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices);
+ }
+ return *this;
+ }
+
+ void swap(CompressedStorage& other)
+ {
+ std::swap(m_values, other.m_values);
+ std::swap(m_indices, other.m_indices);
+ std::swap(m_size, other.m_size);
+ std::swap(m_allocatedSize, other.m_allocatedSize);
+ }
+
+ ~CompressedStorage()
+ {
+ delete[] m_values;
+ delete[] m_indices;
+ }
+
+ void reserve(Index size)
+ {
+ Index newAllocatedSize = m_size + size;
+ if (newAllocatedSize > m_allocatedSize)
+ reallocate(newAllocatedSize);
+ }
+
+ void squeeze()
+ {
+ if (m_allocatedSize>m_size)
+ reallocate(m_size);
+ }
+
+ void resize(Index size, double reserveSizeFactor = 0)
+ {
+ if (m_allocatedSize<size)
+ {
+ Index realloc_size = (std::min<Index>)(NumTraits<StorageIndex>::highest(), size + Index(reserveSizeFactor*double(size)));
+ if(realloc_size<size)
+ internal::throw_std_bad_alloc();
+ reallocate(realloc_size);
+ }
+ m_size = size;
+ }
+
+ void append(const Scalar& v, Index i)
+ {
+ Index id = m_size;
+ resize(m_size+1, 1);
+ m_values[id] = v;
+ m_indices[id] = internal::convert_index<StorageIndex>(i);
+ }
+
+ inline Index size() const { return m_size; }
+ inline Index allocatedSize() const { return m_allocatedSize; }
+ inline void clear() { m_size = 0; }
+
+ const Scalar* valuePtr() const { return m_values; }
+ Scalar* valuePtr() { return m_values; }
+ const StorageIndex* indexPtr() const { return m_indices; }
+ StorageIndex* indexPtr() { return m_indices; }
+
+ inline Scalar& value(Index i) { eigen_internal_assert(m_values!=0); return m_values[i]; }
+ inline const Scalar& value(Index i) const { eigen_internal_assert(m_values!=0); return m_values[i]; }
+
+ inline StorageIndex& index(Index i) { eigen_internal_assert(m_indices!=0); return m_indices[i]; }
+ inline const StorageIndex& index(Index i) const { eigen_internal_assert(m_indices!=0); return m_indices[i]; }
+
+ /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
+ inline Index searchLowerIndex(Index key) const
+ {
+ return searchLowerIndex(0, m_size, key);
+ }
+
+ /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
+ inline Index searchLowerIndex(Index start, Index end, Index key) const
+ {
+ while(end>start)
+ {
+ Index mid = (end+start)>>1;
+ if (m_indices[mid]<key)
+ start = mid+1;
+ else
+ end = mid;
+ }
+ return start;
+ }
+
+ /** \returns the stored value at index \a key
+ * If the value does not exist, then the value \a defaultValue is returned without any insertion. */
+ inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const
+ {
+ if (m_size==0)
+ return defaultValue;
+ else if (key==m_indices[m_size-1])
+ return m_values[m_size-1];
+ // ^^ optimization: let's first check if it is the last coefficient
+ // (very common in high level algorithms)
+ const Index id = searchLowerIndex(0,m_size-1,key);
+ return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
+ }
+
+ /** Like at(), but the search is performed in the range [start,end) */
+ inline Scalar atInRange(Index start, Index end, Index key, const Scalar &defaultValue = Scalar(0)) const
+ {
+ if (start>=end)
+ return defaultValue;
+ else if (end>start && key==m_indices[end-1])
+ return m_values[end-1];
+ // ^^ optimization: let's first check if it is the last coefficient
+ // (very common in high level algorithms)
+ const Index id = searchLowerIndex(start,end-1,key);
+ return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
+ }
+
+ /** \returns a reference to the value at index \a key
+ * If the value does not exist, then the value \a defaultValue is inserted
+ * such that the keys are sorted. */
+ inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0))
+ {
+ Index id = searchLowerIndex(0,m_size,key);
+ if (id>=m_size || m_indices[id]!=key)
+ {
+ if (m_allocatedSize<m_size+1)
+ {
+ m_allocatedSize = 2*(m_size+1);
+ internal::scoped_array<Scalar> newValues(m_allocatedSize);
+ internal::scoped_array<StorageIndex> newIndices(m_allocatedSize);
+
+ // copy first chunk
+ internal::smart_copy(m_values, m_values +id, newValues.ptr());
+ internal::smart_copy(m_indices, m_indices+id, newIndices.ptr());
+
+ // copy the rest
+ if(m_size>id)
+ {
+ internal::smart_copy(m_values +id, m_values +m_size, newValues.ptr() +id+1);
+ internal::smart_copy(m_indices+id, m_indices+m_size, newIndices.ptr()+id+1);
+ }
+ std::swap(m_values,newValues.ptr());
+ std::swap(m_indices,newIndices.ptr());
+ }
+ else if(m_size>id)
+ {
+ internal::smart_memmove(m_values +id, m_values +m_size, m_values +id+1);
+ internal::smart_memmove(m_indices+id, m_indices+m_size, m_indices+id+1);
+ }
+ m_size++;
+ m_indices[id] = internal::convert_index<StorageIndex>(key);
+ m_values[id] = defaultValue;
+ }
+ return m_values[id];
+ }
+
+ void moveChunk(Index from, Index to, Index chunkSize)
+ {
+ eigen_internal_assert(to+chunkSize <= m_size);
+ if(to>from && from+chunkSize>to)
+ {
+ // move backward
+ internal::smart_memmove(m_values+from, m_values+from+chunkSize, m_values+to);
+ internal::smart_memmove(m_indices+from, m_indices+from+chunkSize, m_indices+to);
+ }
+ else
+ {
+ internal::smart_copy(m_values+from, m_values+from+chunkSize, m_values+to);
+ internal::smart_copy(m_indices+from, m_indices+from+chunkSize, m_indices+to);
+ }
+ }
+
+ void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
+ {
+ Index k = 0;
+ Index n = size();
+ for (Index i=0; i<n; ++i)
+ {
+ if (!internal::isMuchSmallerThan(value(i), reference, epsilon))
+ {
+ value(k) = value(i);
+ index(k) = index(i);
+ ++k;
+ }
+ }
+ resize(k,0);
+ }
+
+ protected:
+
+ inline void reallocate(Index size)
+ {
+ #ifdef EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN
+ EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN
+ #endif
+ eigen_internal_assert(size!=m_allocatedSize);
+ internal::scoped_array<Scalar> newValues(size);
+ internal::scoped_array<StorageIndex> newIndices(size);
+ Index copySize = (std::min)(size, m_size);
+ if (copySize>0) {
+ internal::smart_copy(m_values, m_values+copySize, newValues.ptr());
+ internal::smart_copy(m_indices, m_indices+copySize, newIndices.ptr());
+ }
+ std::swap(m_values,newValues.ptr());
+ std::swap(m_indices,newIndices.ptr());
+ m_allocatedSize = size;
+ }
+
+ protected:
+ Scalar* m_values;
+ StorageIndex* m_indices;
+ Index m_size;
+ Index m_allocatedSize;
+
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPRESSED_STORAGE_H
diff --git a/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h b/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
new file mode 100644
index 0000000..9486502
--- /dev/null
+++ b/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
@@ -0,0 +1,352 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
+#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename Lhs, typename Rhs, typename ResultType>
+static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, bool sortedInsertion = false)
+{
+ typedef typename remove_all<Lhs>::type::Scalar LhsScalar;
+ typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
+ typedef typename remove_all<ResultType>::type::Scalar ResScalar;
+
+ // make sure to call innerSize/outerSize since we fake the storage order.
+ Index rows = lhs.innerSize();
+ Index cols = rhs.outerSize();
+ eigen_assert(lhs.outerSize() == rhs.innerSize());
+
+ ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0);
+ ei_declare_aligned_stack_constructed_variable(ResScalar, values, rows, 0);
+ ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0);
+
+ std::memset(mask,0,sizeof(bool)*rows);
+
+ evaluator<Lhs> lhsEval(lhs);
+ evaluator<Rhs> rhsEval(rhs);
+
+ // estimate the number of non zero entries
+ // given a rhs column containing Y non zeros, we assume that the respective Y columns
+ // of the lhs differs in average of one non zeros, thus the number of non zeros for
+ // the product of a rhs column with the lhs is X+Y where X is the average number of non zero
+ // per column of the lhs.
+ // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
+ Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate();
+
+ res.setZero();
+ res.reserve(Index(estimated_nnz_prod));
+ // we compute each column of the result, one after the other
+ for (Index j=0; j<cols; ++j)
+ {
+
+ res.startVec(j);
+ Index nnz = 0;
+ for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
+ {
+ RhsScalar y = rhsIt.value();
+ Index k = rhsIt.index();
+ for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt)
+ {
+ Index i = lhsIt.index();
+ LhsScalar x = lhsIt.value();
+ if(!mask[i])
+ {
+ mask[i] = true;
+ values[i] = x * y;
+ indices[nnz] = i;
+ ++nnz;
+ }
+ else
+ values[i] += x * y;
+ }
+ }
+ if(!sortedInsertion)
+ {
+ // unordered insertion
+ for(Index k=0; k<nnz; ++k)
+ {
+ Index i = indices[k];
+ res.insertBackByOuterInnerUnordered(j,i) = values[i];
+ mask[i] = false;
+ }
+ }
+ else
+ {
+ // alternative ordered insertion code:
+ const Index t200 = rows/11; // 11 == (log2(200)*1.39)
+ const Index t = (rows*100)/139;
+
+ // FIXME reserve nnz non zeros
+ // FIXME implement faster sorting algorithms for very small nnz
+ // if the result is sparse enough => use a quick sort
+ // otherwise => loop through the entire vector
+ // In order to avoid to perform an expensive log2 when the
+ // result is clearly very sparse we use a linear bound up to 200.
+ if((nnz<200 && nnz<t200) || nnz * numext::log2(int(nnz)) < t)
+ {
+ if(nnz>1) std::sort(indices,indices+nnz);
+ for(Index k=0; k<nnz; ++k)
+ {
+ Index i = indices[k];
+ res.insertBackByOuterInner(j,i) = values[i];
+ mask[i] = false;
+ }
+ }
+ else
+ {
+ // dense path
+ for(Index i=0; i<rows; ++i)
+ {
+ if(mask[i])
+ {
+ mask[i] = false;
+ res.insertBackByOuterInner(j,i) = values[i];
+ }
+ }
+ }
+ }
+ }
+ res.finalize();
+}
+
+
+} // end namespace internal
+
+namespace internal {
+
+template<typename Lhs, typename Rhs, typename ResultType,
+ int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
+ int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
+ int ResStorageOrder = (traits<ResultType>::Flags&RowMajorBit) ? RowMajor : ColMajor>
+struct conservative_sparse_sparse_product_selector;
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
+{
+ typedef typename remove_all<Lhs>::type LhsCleaned;
+ typedef typename LhsCleaned::Scalar Scalar;
+
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
+ typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrixAux;
+ typedef typename sparse_eval<ColMajorMatrixAux,ResultType::RowsAtCompileTime,ResultType::ColsAtCompileTime,ColMajorMatrixAux::Flags>::type ColMajorMatrix;
+
+ // If the result is tall and thin (in the extreme case a column vector)
+ // then it is faster to sort the coefficients inplace instead of transposing twice.
+ // FIXME, the following heuristic is probably not very good.
+ if(lhs.rows()>rhs.cols())
+ {
+ ColMajorMatrix resCol(lhs.rows(),rhs.cols());
+ // perform sorted insertion
+ internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol, true);
+ res = resCol.markAsRValue();
+ }
+ else
+ {
+ ColMajorMatrixAux resCol(lhs.rows(),rhs.cols());
+ // resort to transpose to sort the entries
+ internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrixAux>(lhs, rhs, resCol, false);
+ RowMajorMatrix resRow(resCol);
+ res = resRow.markAsRValue();
+ }
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
+{
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ typedef SparseMatrix<typename Rhs::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRhs;
+ typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRes;
+ RowMajorRhs rhsRow = rhs;
+ RowMajorRes resRow(lhs.rows(), rhs.cols());
+ internal::conservative_sparse_sparse_product_impl<RowMajorRhs,Lhs,RowMajorRes>(rhsRow, lhs, resRow);
+ res = resRow;
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
+{
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ typedef SparseMatrix<typename Lhs::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorLhs;
+ typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRes;
+ RowMajorLhs lhsRow = lhs;
+ RowMajorRes resRow(lhs.rows(), rhs.cols());
+ internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorLhs,RowMajorRes>(rhs, lhsRow, resRow);
+ res = resRow;
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
+{
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
+ RowMajorMatrix resRow(lhs.rows(), rhs.cols());
+ internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
+ res = resRow;
+ }
+};
+
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
+{
+ typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
+
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
+ ColMajorMatrix resCol(lhs.rows(), rhs.cols());
+ internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
+ res = resCol;
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
+{
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorLhs;
+ typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRes;
+ ColMajorLhs lhsCol = lhs;
+ ColMajorRes resCol(lhs.rows(), rhs.cols());
+ internal::conservative_sparse_sparse_product_impl<ColMajorLhs,Rhs,ColMajorRes>(lhsCol, rhs, resCol);
+ res = resCol;
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
+{
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRhs;
+ typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRes;
+ ColMajorRhs rhsCol = rhs;
+ ColMajorRes resCol(lhs.rows(), rhs.cols());
+ internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorRhs,ColMajorRes>(lhs, rhsCol, resCol);
+ res = resCol;
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
+{
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
+ typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
+ RowMajorMatrix resRow(lhs.rows(),rhs.cols());
+ internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
+ // sort the non zeros:
+ ColMajorMatrix resCol(resRow);
+ res = resCol;
+ }
+};
+
+} // end namespace internal
+
+
+namespace internal {
+
+template<typename Lhs, typename Rhs, typename ResultType>
+static void sparse_sparse_to_dense_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+{
+ typedef typename remove_all<Lhs>::type::Scalar LhsScalar;
+ typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
+ Index cols = rhs.outerSize();
+ eigen_assert(lhs.outerSize() == rhs.innerSize());
+
+ evaluator<Lhs> lhsEval(lhs);
+ evaluator<Rhs> rhsEval(rhs);
+
+ for (Index j=0; j<cols; ++j)
+ {
+ for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
+ {
+ RhsScalar y = rhsIt.value();
+ Index k = rhsIt.index();
+ for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt)
+ {
+ Index i = lhsIt.index();
+ LhsScalar x = lhsIt.value();
+ res.coeffRef(i,j) += x * y;
+ }
+ }
+ }
+}
+
+
+} // end namespace internal
+
+namespace internal {
+
+template<typename Lhs, typename Rhs, typename ResultType,
+ int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
+ int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor>
+struct sparse_sparse_to_dense_product_selector;
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor>
+{
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ internal::sparse_sparse_to_dense_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, res);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor>
+{
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorLhs;
+ ColMajorLhs lhsCol(lhs);
+ internal::sparse_sparse_to_dense_product_impl<ColMajorLhs,Rhs,ResultType>(lhsCol, rhs, res);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor>
+{
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRhs;
+ ColMajorRhs rhsCol(rhs);
+ internal::sparse_sparse_to_dense_product_impl<Lhs,ColMajorRhs,ResultType>(lhs, rhsCol, res);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor>
+{
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
+ {
+ Transpose<ResultType> trRes(res);
+ internal::sparse_sparse_to_dense_product_impl<Rhs,Lhs,Transpose<ResultType> >(rhs, lhs, trRes);
+ }
+};
+
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
diff --git a/Eigen/src/SparseCore/MappedSparseMatrix.h b/Eigen/src/SparseCore/MappedSparseMatrix.h
new file mode 100644
index 0000000..67718c8
--- /dev/null
+++ b/Eigen/src/SparseCore/MappedSparseMatrix.h
@@ -0,0 +1,67 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MAPPED_SPARSEMATRIX_H
+#define EIGEN_MAPPED_SPARSEMATRIX_H
+
+namespace Eigen {
+
+/** \deprecated Use Map<SparseMatrix<> >
+ * \class MappedSparseMatrix
+ *
+ * \brief Sparse matrix
+ *
+ * \param _Scalar the scalar type, i.e. the type of the coefficients
+ *
+ * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
+ *
+ */
+namespace internal {
+template<typename _Scalar, int _Flags, typename _StorageIndex>
+struct traits<MappedSparseMatrix<_Scalar, _Flags, _StorageIndex> > : traits<SparseMatrix<_Scalar, _Flags, _StorageIndex> >
+{};
+} // end namespace internal
+
+template<typename _Scalar, int _Flags, typename _StorageIndex>
+class MappedSparseMatrix
+ : public Map<SparseMatrix<_Scalar, _Flags, _StorageIndex> >
+{
+ typedef Map<SparseMatrix<_Scalar, _Flags, _StorageIndex> > Base;
+
+ public:
+
+ typedef typename Base::StorageIndex StorageIndex;
+ typedef typename Base::Scalar Scalar;
+
+ inline MappedSparseMatrix(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr, StorageIndex* innerIndexPtr, Scalar* valuePtr, StorageIndex* innerNonZeroPtr = 0)
+ : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZeroPtr)
+ {}
+
+ /** Empty destructor */
+ inline ~MappedSparseMatrix() {}
+};
+
+namespace internal {
+
+template<typename _Scalar, int _Options, typename _StorageIndex>
+struct evaluator<MappedSparseMatrix<_Scalar,_Options,_StorageIndex> >
+ : evaluator<SparseCompressedBase<MappedSparseMatrix<_Scalar,_Options,_StorageIndex> > >
+{
+ typedef MappedSparseMatrix<_Scalar,_Options,_StorageIndex> XprType;
+ typedef evaluator<SparseCompressedBase<XprType> > Base;
+
+ evaluator() : Base() {}
+ explicit evaluator(const XprType &mat) : Base(mat) {}
+};
+
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_MAPPED_SPARSEMATRIX_H
diff --git a/Eigen/src/SparseCore/SparseAssign.h b/Eigen/src/SparseCore/SparseAssign.h
new file mode 100644
index 0000000..905485c
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseAssign.h
@@ -0,0 +1,270 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEASSIGN_H
+#define EIGEN_SPARSEASSIGN_H
+
+namespace Eigen {
+
+template<typename Derived>
+template<typename OtherDerived>
+Derived& SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
+{
+ internal::call_assignment_no_alias(derived(), other.derived());
+ return derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+Derived& SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
+{
+ // TODO use the evaluator mechanism
+ other.evalTo(derived());
+ return derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+inline Derived& SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived>& other)
+{
+ // by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine
+ internal::Assignment<Derived,OtherDerived,internal::assign_op<Scalar,typename OtherDerived::Scalar> >
+ ::run(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
+ return derived();
+}
+
+template<typename Derived>
+inline Derived& SparseMatrixBase<Derived>::operator=(const Derived& other)
+{
+ internal::call_assignment_no_alias(derived(), other.derived());
+ return derived();
+}
+
+namespace internal {
+
+template<>
+struct storage_kind_to_evaluator_kind<Sparse> {
+ typedef IteratorBased Kind;
+};
+
+template<>
+struct storage_kind_to_shape<Sparse> {
+ typedef SparseShape Shape;
+};
+
+struct Sparse2Sparse {};
+struct Sparse2Dense {};
+
+template<> struct AssignmentKind<SparseShape, SparseShape> { typedef Sparse2Sparse Kind; };
+template<> struct AssignmentKind<SparseShape, SparseTriangularShape> { typedef Sparse2Sparse Kind; };
+template<> struct AssignmentKind<DenseShape, SparseShape> { typedef Sparse2Dense Kind; };
+template<> struct AssignmentKind<DenseShape, SparseTriangularShape> { typedef Sparse2Dense Kind; };
+
+
+template<typename DstXprType, typename SrcXprType>
+void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src)
+{
+ typedef typename DstXprType::Scalar Scalar;
+ typedef internal::evaluator<DstXprType> DstEvaluatorType;
+ typedef internal::evaluator<SrcXprType> SrcEvaluatorType;
+
+ SrcEvaluatorType srcEvaluator(src);
+
+ const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit);
+ const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols();
+ if ((!transpose) && src.isRValue())
+ {
+ // eval without temporary
+ dst.resize(src.rows(), src.cols());
+ dst.setZero();
+ dst.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2));
+ for (Index j=0; j<outerEvaluationSize; ++j)
+ {
+ dst.startVec(j);
+ for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it)
+ {
+ Scalar v = it.value();
+ dst.insertBackByOuterInner(j,it.index()) = v;
+ }
+ }
+ dst.finalize();
+ }
+ else
+ {
+ // eval through a temporary
+ eigen_assert(( ((internal::traits<DstXprType>::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
+ (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) &&
+ "the transpose operation is supposed to be handled in SparseMatrix::operator=");
+
+ enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) };
+
+
+ DstXprType temp(src.rows(), src.cols());
+
+ temp.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2));
+ for (Index j=0; j<outerEvaluationSize; ++j)
+ {
+ temp.startVec(j);
+ for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it)
+ {
+ Scalar v = it.value();
+ temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
+ }
+ }
+ temp.finalize();
+
+ dst = temp.markAsRValue();
+ }
+}
+
+// Generic Sparse to Sparse assignment
+template< typename DstXprType, typename SrcXprType, typename Functor>
+struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
+ {
+ assign_sparse_to_sparse(dst.derived(), src.derived());
+ }
+};
+
+// Generic Sparse to Dense assignment
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
+struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense, Weak>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ if(internal::is_same<Functor,internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> >::value)
+ dst.setZero();
+
+ internal::evaluator<SrcXprType> srcEval(src);
+ resize_if_allowed(dst, src, func);
+ internal::evaluator<DstXprType> dstEval(dst);
+
+ const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags&RowMajorBit) ? src.rows() : src.cols();
+ for (Index j=0; j<outerEvaluationSize; ++j)
+ for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval,j); i; ++i)
+ func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value());
+ }
+};
+
+// Specialization for dense ?= dense +/- sparse and dense ?= sparse +/- dense
+template<typename DstXprType, typename Func1, typename Func2>
+struct assignment_from_dense_op_sparse
+{
+ template<typename SrcXprType, typename InitialFunc>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/)
+ {
+ #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN
+ EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN
+ #endif
+
+ call_assignment_no_alias(dst, src.lhs(), Func1());
+ call_assignment_no_alias(dst, src.rhs(), Func2());
+ }
+
+ // Specialization for dense1 = sparse + dense2; -> dense1 = dense2; dense1 += sparse;
+ template<typename Lhs, typename Rhs, typename Scalar>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type
+ run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_sum_op<Scalar,Scalar>, const Lhs, const Rhs> &src,
+ const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/)
+ {
+ #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN
+ EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN
+ #endif
+
+ // Apply the dense matrix first, then the sparse one.
+ call_assignment_no_alias(dst, src.rhs(), Func1());
+ call_assignment_no_alias(dst, src.lhs(), Func2());
+ }
+
+ // Specialization for dense1 = sparse - dense2; -> dense1 = -dense2; dense1 += sparse;
+ template<typename Lhs, typename Rhs, typename Scalar>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type
+ run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_difference_op<Scalar,Scalar>, const Lhs, const Rhs> &src,
+ const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/)
+ {
+ #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN
+ EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN
+ #endif
+
+ // Apply the dense matrix first, then the sparse one.
+ call_assignment_no_alias(dst, -src.rhs(), Func1());
+ call_assignment_no_alias(dst, src.lhs(), add_assign_op<typename DstXprType::Scalar,typename Lhs::Scalar>());
+ }
+};
+
+#define EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(ASSIGN_OP,BINOP,ASSIGN_OP2) \
+ template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> \
+ struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<Scalar,Scalar>, const Lhs, const Rhs>, internal::ASSIGN_OP<typename DstXprType::Scalar,Scalar>, \
+ Sparse2Dense, \
+ typename internal::enable_if< internal::is_same<typename internal::evaluator_traits<Lhs>::Shape,DenseShape>::value \
+ || internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type> \
+ : assignment_from_dense_op_sparse<DstXprType, internal::ASSIGN_OP<typename DstXprType::Scalar,typename Lhs::Scalar>, internal::ASSIGN_OP2<typename DstXprType::Scalar,typename Rhs::Scalar> > \
+ {}
+
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_sum_op,add_assign_op);
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_sum_op,add_assign_op);
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_sum_op,sub_assign_op);
+
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_difference_op,sub_assign_op);
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_difference_op,sub_assign_op);
+EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_difference_op,add_assign_op);
+
+
+// Specialization for "dst = dec.solve(rhs)"
+// NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error
+template<typename DstXprType, typename DecType, typename RhsType, typename Scalar>
+struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar,Scalar>, Sparse2Sparse>
+{
+ typedef Solve<DecType,RhsType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
+ {
+ Index dstRows = src.rows();
+ Index dstCols = src.cols();
+ if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
+ dst.resize(dstRows, dstCols);
+
+ src.dec()._solve_impl(src.rhs(), dst);
+ }
+};
+
+struct Diagonal2Sparse {};
+
+template<> struct AssignmentKind<SparseShape,DiagonalShape> { typedef Diagonal2Sparse Kind; };
+
+template< typename DstXprType, typename SrcXprType, typename Functor>
+struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse>
+{
+ typedef typename DstXprType::StorageIndex StorageIndex;
+ typedef typename DstXprType::Scalar Scalar;
+
+ template<int Options, typename AssignFunc>
+ static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const AssignFunc &func)
+ { dst.assignDiagonal(src.diagonal(), func); }
+
+ template<typename DstDerived>
+ static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
+ { dst.derived().diagonal() = src.diagonal(); }
+
+ template<typename DstDerived>
+ static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
+ { dst.derived().diagonal() += src.diagonal(); }
+
+ template<typename DstDerived>
+ static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
+ { dst.derived().diagonal() -= src.diagonal(); }
+};
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEASSIGN_H
diff --git a/Eigen/src/SparseCore/SparseBlock.h b/Eigen/src/SparseCore/SparseBlock.h
new file mode 100644
index 0000000..5b4f6cc
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseBlock.h
@@ -0,0 +1,571 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_BLOCK_H
+#define EIGEN_SPARSE_BLOCK_H
+
+namespace Eigen {
+
+// Subset of columns or rows
+template<typename XprType, int BlockRows, int BlockCols>
+class BlockImpl<XprType,BlockRows,BlockCols,true,Sparse>
+ : public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,true> >
+{
+ typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
+ typedef Block<XprType, BlockRows, BlockCols, true> BlockType;
+public:
+ enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
+protected:
+ enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
+ typedef SparseMatrixBase<BlockType> Base;
+ using Base::convert_index;
+public:
+ EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
+
+ inline BlockImpl(XprType& xpr, Index i)
+ : m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize)
+ {}
+
+ inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
+ : m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols))
+ {}
+
+ EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
+ EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
+
+ Index nonZeros() const
+ {
+ typedef internal::evaluator<XprType> EvaluatorType;
+ EvaluatorType matEval(m_matrix);
+ Index nnz = 0;
+ Index end = m_outerStart + m_outerSize.value();
+ for(Index j=m_outerStart; j<end; ++j)
+ for(typename EvaluatorType::InnerIterator it(matEval, j); it; ++it)
+ ++nnz;
+ return nnz;
+ }
+
+ inline const Scalar coeff(Index row, Index col) const
+ {
+ return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
+ }
+
+ inline const Scalar coeff(Index index) const
+ {
+ return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
+ }
+
+ inline const XprType& nestedExpression() const { return m_matrix; }
+ inline XprType& nestedExpression() { return m_matrix; }
+ Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
+ Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
+ Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
+ Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
+
+ protected:
+
+ typename internal::ref_selector<XprType>::non_const_type m_matrix;
+ Index m_outerStart;
+ const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
+
+ protected:
+ // Disable assignment with clear error message.
+ // Note that simply removing operator= yields compilation errors with ICC+MSVC
+ template<typename T>
+ BlockImpl& operator=(const T&)
+ {
+ EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY);
+ return *this;
+ }
+};
+
+
+/***************************************************************************
+* specialization for SparseMatrix
+***************************************************************************/
+
+namespace internal {
+
+template<typename SparseMatrixType, int BlockRows, int BlockCols>
+class sparse_matrix_block_impl
+ : public SparseCompressedBase<Block<SparseMatrixType,BlockRows,BlockCols,true> >
+{
+ typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _MatrixTypeNested;
+ typedef Block<SparseMatrixType, BlockRows, BlockCols, true> BlockType;
+ typedef SparseCompressedBase<Block<SparseMatrixType,BlockRows,BlockCols,true> > Base;
+ using Base::convert_index;
+public:
+ enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
+ EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
+protected:
+ typedef typename Base::IndexVector IndexVector;
+ enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
+public:
+
+ inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index i)
+ : m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize)
+ {}
+
+ inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
+ : m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols))
+ {}
+
+ template<typename OtherDerived>
+ inline BlockType& operator=(const SparseMatrixBase<OtherDerived>& other)
+ {
+ typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _NestedMatrixType;
+ _NestedMatrixType& matrix = m_matrix;
+ // This assignment is slow if this vector set is not empty
+ // and/or it is not at the end of the nonzeros of the underlying matrix.
+
+ // 1 - eval to a temporary to avoid transposition and/or aliasing issues
+ Ref<const SparseMatrix<Scalar, IsRowMajor ? RowMajor : ColMajor, StorageIndex> > tmp(other.derived());
+ eigen_internal_assert(tmp.outerSize()==m_outerSize.value());
+
+ // 2 - let's check whether there is enough allocated memory
+ Index nnz = tmp.nonZeros();
+ Index start = m_outerStart==0 ? 0 : m_matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block
+ Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending position of the current block
+ Index block_size = end - start; // available room in the current block
+ Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end;
+
+ Index free_size = m_matrix.isCompressed()
+ ? Index(matrix.data().allocatedSize()) + block_size
+ : block_size;
+
+ Index tmp_start = tmp.outerIndexPtr()[0];
+
+ bool update_trailing_pointers = false;
+ if(nnz>free_size)
+ {
+ // realloc manually to reduce copies
+ typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz);
+
+ internal::smart_copy(m_matrix.valuePtr(), m_matrix.valuePtr() + start, newdata.valuePtr());
+ internal::smart_copy(m_matrix.innerIndexPtr(), m_matrix.innerIndexPtr() + start, newdata.indexPtr());
+
+ internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, newdata.valuePtr() + start);
+ internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, newdata.indexPtr() + start);
+
+ internal::smart_copy(matrix.valuePtr()+end, matrix.valuePtr()+end + tail_size, newdata.valuePtr()+start+nnz);
+ internal::smart_copy(matrix.innerIndexPtr()+end, matrix.innerIndexPtr()+end + tail_size, newdata.indexPtr()+start+nnz);
+
+ newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz);
+
+ matrix.data().swap(newdata);
+
+ update_trailing_pointers = true;
+ }
+ else
+ {
+ if(m_matrix.isCompressed() && nnz!=block_size)
+ {
+ // no need to realloc, simply copy the tail at its respective position and insert tmp
+ matrix.data().resize(start + nnz + tail_size);
+
+ internal::smart_memmove(matrix.valuePtr()+end, matrix.valuePtr() + end+tail_size, matrix.valuePtr() + start+nnz);
+ internal::smart_memmove(matrix.innerIndexPtr()+end, matrix.innerIndexPtr() + end+tail_size, matrix.innerIndexPtr() + start+nnz);
+
+ update_trailing_pointers = true;
+ }
+
+ internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, matrix.valuePtr() + start);
+ internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, matrix.innerIndexPtr() + start);
+ }
+
+ // update outer index pointers and innerNonZeros
+ if(IsVectorAtCompileTime)
+ {
+ if(!m_matrix.isCompressed())
+ matrix.innerNonZeroPtr()[m_outerStart] = StorageIndex(nnz);
+ matrix.outerIndexPtr()[m_outerStart] = StorageIndex(start);
+ }
+ else
+ {
+ StorageIndex p = StorageIndex(start);
+ for(Index k=0; k<m_outerSize.value(); ++k)
+ {
+ StorageIndex nnz_k = internal::convert_index<StorageIndex>(tmp.innerVector(k).nonZeros());
+ if(!m_matrix.isCompressed())
+ matrix.innerNonZeroPtr()[m_outerStart+k] = nnz_k;
+ matrix.outerIndexPtr()[m_outerStart+k] = p;
+ p += nnz_k;
+ }
+ }
+
+ if(update_trailing_pointers)
+ {
+ StorageIndex offset = internal::convert_index<StorageIndex>(nnz - block_size);
+ for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k)
+ {
+ matrix.outerIndexPtr()[k] += offset;
+ }
+ }
+
+ return derived();
+ }
+
+ inline BlockType& operator=(const BlockType& other)
+ {
+ return operator=<BlockType>(other);
+ }
+
+ inline const Scalar* valuePtr() const
+ { return m_matrix.valuePtr(); }
+ inline Scalar* valuePtr()
+ { return m_matrix.valuePtr(); }
+
+ inline const StorageIndex* innerIndexPtr() const
+ { return m_matrix.innerIndexPtr(); }
+ inline StorageIndex* innerIndexPtr()
+ { return m_matrix.innerIndexPtr(); }
+
+ inline const StorageIndex* outerIndexPtr() const
+ { return m_matrix.outerIndexPtr() + m_outerStart; }
+ inline StorageIndex* outerIndexPtr()
+ { return m_matrix.outerIndexPtr() + m_outerStart; }
+
+ inline const StorageIndex* innerNonZeroPtr() const
+ { return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); }
+ inline StorageIndex* innerNonZeroPtr()
+ { return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); }
+
+ bool isCompressed() const { return m_matrix.innerNonZeroPtr()==0; }
+
+ inline Scalar& coeffRef(Index row, Index col)
+ {
+ return m_matrix.coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
+ }
+
+ inline const Scalar coeff(Index row, Index col) const
+ {
+ return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
+ }
+
+ inline const Scalar coeff(Index index) const
+ {
+ return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
+ }
+
+ const Scalar& lastCoeff() const
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(sparse_matrix_block_impl);
+ eigen_assert(Base::nonZeros()>0);
+ if(m_matrix.isCompressed())
+ return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1];
+ else
+ return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1];
+ }
+
+ EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
+ EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
+
+ inline const SparseMatrixType& nestedExpression() const { return m_matrix; }
+ inline SparseMatrixType& nestedExpression() { return m_matrix; }
+ Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
+ Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
+ Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
+ Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
+
+ protected:
+
+ typename internal::ref_selector<SparseMatrixType>::non_const_type m_matrix;
+ Index m_outerStart;
+ const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
+
+};
+
+} // namespace internal
+
+template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
+class BlockImpl<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true,Sparse>
+ : public internal::sparse_matrix_block_impl<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols>
+{
+public:
+ typedef _StorageIndex StorageIndex;
+ typedef SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType;
+ typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
+ inline BlockImpl(SparseMatrixType& xpr, Index i)
+ : Base(xpr, i)
+ {}
+
+ inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
+ : Base(xpr, startRow, startCol, blockRows, blockCols)
+ {}
+
+ using Base::operator=;
+};
+
+template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
+class BlockImpl<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true,Sparse>
+ : public internal::sparse_matrix_block_impl<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols>
+{
+public:
+ typedef _StorageIndex StorageIndex;
+ typedef const SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType;
+ typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
+ inline BlockImpl(SparseMatrixType& xpr, Index i)
+ : Base(xpr, i)
+ {}
+
+ inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
+ : Base(xpr, startRow, startCol, blockRows, blockCols)
+ {}
+
+ using Base::operator=;
+private:
+ template<typename Derived> BlockImpl(const SparseMatrixBase<Derived>& xpr, Index i);
+ template<typename Derived> BlockImpl(const SparseMatrixBase<Derived>& xpr);
+};
+
+//----------
+
+/** Generic implementation of sparse Block expression.
+ * Real-only.
+ */
+template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
+class BlockImpl<XprType,BlockRows,BlockCols,InnerPanel,Sparse>
+ : public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,InnerPanel> >, internal::no_assignment_operator
+{
+ typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
+ typedef SparseMatrixBase<BlockType> Base;
+ using Base::convert_index;
+public:
+ enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
+ EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
+
+ typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
+
+ /** Column or Row constructor
+ */
+ inline BlockImpl(XprType& xpr, Index i)
+ : m_matrix(xpr),
+ m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? convert_index(i) : 0),
+ m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? convert_index(i) : 0),
+ m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
+ m_blockCols(BlockCols==1 ? 1 : xpr.cols())
+ {}
+
+ /** Dynamic-size constructor
+ */
+ inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
+ : m_matrix(xpr), m_startRow(convert_index(startRow)), m_startCol(convert_index(startCol)), m_blockRows(convert_index(blockRows)), m_blockCols(convert_index(blockCols))
+ {}
+
+ inline Index rows() const { return m_blockRows.value(); }
+ inline Index cols() const { return m_blockCols.value(); }
+
+ inline Scalar& coeffRef(Index row, Index col)
+ {
+ return m_matrix.coeffRef(row + m_startRow.value(), col + m_startCol.value());
+ }
+
+ inline const Scalar coeff(Index row, Index col) const
+ {
+ return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value());
+ }
+
+ inline Scalar& coeffRef(Index index)
+ {
+ return m_matrix.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
+ m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
+ }
+
+ inline const Scalar coeff(Index index) const
+ {
+ return m_matrix.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
+ m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
+ }
+
+ inline const XprType& nestedExpression() const { return m_matrix; }
+ inline XprType& nestedExpression() { return m_matrix; }
+ Index startRow() const { return m_startRow.value(); }
+ Index startCol() const { return m_startCol.value(); }
+ Index blockRows() const { return m_blockRows.value(); }
+ Index blockCols() const { return m_blockCols.value(); }
+
+ protected:
+// friend class internal::GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel>;
+ friend struct internal::unary_evaluator<Block<XprType,BlockRows,BlockCols,InnerPanel>, internal::IteratorBased, Scalar >;
+
+ Index nonZeros() const { return Dynamic; }
+
+ typename internal::ref_selector<XprType>::non_const_type m_matrix;
+ const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
+ const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
+ const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
+ const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
+
+ protected:
+ // Disable assignment with clear error message.
+ // Note that simply removing operator= yields compilation errors with ICC+MSVC
+ template<typename T>
+ BlockImpl& operator=(const T&)
+ {
+ EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY);
+ return *this;
+ }
+
+};
+
+namespace internal {
+
+template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
+struct unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased >
+ : public evaluator_base<Block<ArgType,BlockRows,BlockCols,InnerPanel> >
+{
+ class InnerVectorInnerIterator;
+ class OuterVectorInnerIterator;
+ public:
+ typedef Block<ArgType,BlockRows,BlockCols,InnerPanel> XprType;
+ typedef typename XprType::StorageIndex StorageIndex;
+ typedef typename XprType::Scalar Scalar;
+
+ enum {
+ IsRowMajor = XprType::IsRowMajor,
+
+ OuterVector = (BlockCols==1 && ArgType::IsRowMajor)
+ | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
+ // revert to || as soon as not needed anymore.
+ (BlockRows==1 && !ArgType::IsRowMajor),
+
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = XprType::Flags
+ };
+
+ typedef typename internal::conditional<OuterVector,OuterVectorInnerIterator,InnerVectorInnerIterator>::type InnerIterator;
+
+ explicit unary_evaluator(const XprType& op)
+ : m_argImpl(op.nestedExpression()), m_block(op)
+ {}
+
+ inline Index nonZerosEstimate() const {
+ const Index nnz = m_block.nonZeros();
+ if(nnz < 0) {
+ // Scale the non-zero estimate for the underlying expression linearly with block size.
+ // Return zero if the underlying block is empty.
+ const Index nested_sz = m_block.nestedExpression().size();
+ return nested_sz == 0 ? 0 : m_argImpl.nonZerosEstimate() * m_block.size() / nested_sz;
+ }
+ return nnz;
+ }
+
+ protected:
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+
+ evaluator<ArgType> m_argImpl;
+ const XprType &m_block;
+};
+
+template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
+class unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased>::InnerVectorInnerIterator
+ : public EvalIterator
+{
+ // NOTE MSVC fails to compile if we don't explicitely "import" IsRowMajor from unary_evaluator
+ // because the base class EvalIterator has a private IsRowMajor enum too. (bug #1786)
+ // NOTE We cannot call it IsRowMajor because it would shadow unary_evaluator::IsRowMajor
+ enum { XprIsRowMajor = unary_evaluator::IsRowMajor };
+ const XprType& m_block;
+ Index m_end;
+public:
+
+ EIGEN_STRONG_INLINE InnerVectorInnerIterator(const unary_evaluator& aEval, Index outer)
+ : EvalIterator(aEval.m_argImpl, outer + (XprIsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol())),
+ m_block(aEval.m_block),
+ m_end(XprIsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows())
+ {
+ while( (EvalIterator::operator bool()) && (EvalIterator::index() < (XprIsRowMajor ? m_block.startCol() : m_block.startRow())) )
+ EvalIterator::operator++();
+ }
+
+ inline StorageIndex index() const { return EvalIterator::index() - convert_index<StorageIndex>(XprIsRowMajor ? m_block.startCol() : m_block.startRow()); }
+ inline Index outer() const { return EvalIterator::outer() - (XprIsRowMajor ? m_block.startRow() : m_block.startCol()); }
+ inline Index row() const { return EvalIterator::row() - m_block.startRow(); }
+ inline Index col() const { return EvalIterator::col() - m_block.startCol(); }
+
+ inline operator bool() const { return EvalIterator::operator bool() && EvalIterator::index() < m_end; }
+};
+
+template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
+class unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased>::OuterVectorInnerIterator
+{
+ // NOTE see above
+ enum { XprIsRowMajor = unary_evaluator::IsRowMajor };
+ const unary_evaluator& m_eval;
+ Index m_outerPos;
+ const Index m_innerIndex;
+ Index m_end;
+ EvalIterator m_it;
+public:
+
+ EIGEN_STRONG_INLINE OuterVectorInnerIterator(const unary_evaluator& aEval, Index outer)
+ : m_eval(aEval),
+ m_outerPos( (XprIsRowMajor ? aEval.m_block.startCol() : aEval.m_block.startRow()) ),
+ m_innerIndex(XprIsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol()),
+ m_end(XprIsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows()),
+ m_it(m_eval.m_argImpl, m_outerPos)
+ {
+ EIGEN_UNUSED_VARIABLE(outer);
+ eigen_assert(outer==0);
+
+ while(m_it && m_it.index() < m_innerIndex) ++m_it;
+ if((!m_it) || (m_it.index()!=m_innerIndex))
+ ++(*this);
+ }
+
+ inline StorageIndex index() const { return convert_index<StorageIndex>(m_outerPos - (XprIsRowMajor ? m_eval.m_block.startCol() : m_eval.m_block.startRow())); }
+ inline Index outer() const { return 0; }
+ inline Index row() const { return XprIsRowMajor ? 0 : index(); }
+ inline Index col() const { return XprIsRowMajor ? index() : 0; }
+
+ inline Scalar value() const { return m_it.value(); }
+ inline Scalar& valueRef() { return m_it.valueRef(); }
+
+ inline OuterVectorInnerIterator& operator++()
+ {
+ // search next non-zero entry
+ while(++m_outerPos<m_end)
+ {
+ // Restart iterator at the next inner-vector:
+ m_it.~EvalIterator();
+ ::new (&m_it) EvalIterator(m_eval.m_argImpl, m_outerPos);
+ // search for the key m_innerIndex in the current outer-vector
+ while(m_it && m_it.index() < m_innerIndex) ++m_it;
+ if(m_it && m_it.index()==m_innerIndex) break;
+ }
+ return *this;
+ }
+
+ inline operator bool() const { return m_outerPos < m_end; }
+};
+
+template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
+struct unary_evaluator<Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true>, IteratorBased>
+ : evaluator<SparseCompressedBase<Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> > >
+{
+ typedef Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> XprType;
+ typedef evaluator<SparseCompressedBase<XprType> > Base;
+ explicit unary_evaluator(const XprType &xpr) : Base(xpr) {}
+};
+
+template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
+struct unary_evaluator<Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true>, IteratorBased>
+ : evaluator<SparseCompressedBase<Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> > >
+{
+ typedef Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> XprType;
+ typedef evaluator<SparseCompressedBase<XprType> > Base;
+ explicit unary_evaluator(const XprType &xpr) : Base(xpr) {}
+};
+
+} // end namespace internal
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_BLOCK_H
diff --git a/Eigen/src/SparseCore/SparseColEtree.h b/Eigen/src/SparseCore/SparseColEtree.h
new file mode 100644
index 0000000..ebe02d1
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseColEtree.h
@@ -0,0 +1,206 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+
+/*
+
+ * NOTE: This file is the modified version of sp_coletree.c file in SuperLU
+
+ * -- SuperLU routine (version 3.1) --
+ * Univ. of California Berkeley, Xerox Palo Alto Research Center,
+ * and Lawrence Berkeley National Lab.
+ * August 1, 2008
+ *
+ * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
+ *
+ * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
+ * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
+ *
+ * Permission is hereby granted to use or copy this program for any
+ * purpose, provided the above notices are retained on all copies.
+ * Permission to modify the code and to distribute modified code is
+ * granted, provided the above notices are retained, and a notice that
+ * the code was modified is included with the above copyright notice.
+ */
+#ifndef SPARSE_COLETREE_H
+#define SPARSE_COLETREE_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** Find the root of the tree/set containing the vertex i : Use Path halving */
+template<typename Index, typename IndexVector>
+Index etree_find (Index i, IndexVector& pp)
+{
+ Index p = pp(i); // Parent
+ Index gp = pp(p); // Grand parent
+ while (gp != p)
+ {
+ pp(i) = gp; // Parent pointer on find path is changed to former grand parent
+ i = gp;
+ p = pp(i);
+ gp = pp(p);
+ }
+ return p;
+}
+
+/** Compute the column elimination tree of a sparse matrix
+ * \param mat The matrix in column-major format.
+ * \param parent The elimination tree
+ * \param firstRowElt The column index of the first element in each row
+ * \param perm The permutation to apply to the column of \b mat
+ */
+template <typename MatrixType, typename IndexVector>
+int coletree(const MatrixType& mat, IndexVector& parent, IndexVector& firstRowElt, typename MatrixType::StorageIndex *perm=0)
+{
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ StorageIndex nc = convert_index<StorageIndex>(mat.cols()); // Number of columns
+ StorageIndex m = convert_index<StorageIndex>(mat.rows());
+ StorageIndex diagSize = (std::min)(nc,m);
+ IndexVector root(nc); // root of subtree of etree
+ root.setZero();
+ IndexVector pp(nc); // disjoint sets
+ pp.setZero(); // Initialize disjoint sets
+ parent.resize(mat.cols());
+ //Compute first nonzero column in each row
+ firstRowElt.resize(m);
+ firstRowElt.setConstant(nc);
+ firstRowElt.segment(0, diagSize).setLinSpaced(diagSize, 0, diagSize-1);
+ bool found_diag;
+ for (StorageIndex col = 0; col < nc; col++)
+ {
+ StorageIndex pcol = col;
+ if(perm) pcol = perm[col];
+ for (typename MatrixType::InnerIterator it(mat, pcol); it; ++it)
+ {
+ Index row = it.row();
+ firstRowElt(row) = (std::min)(firstRowElt(row), col);
+ }
+ }
+ /* Compute etree by Liu's algorithm for symmetric matrices,
+ except use (firstRowElt[r],c) in place of an edge (r,c) of A.
+ Thus each row clique in A'*A is replaced by a star
+ centered at its first vertex, which has the same fill. */
+ StorageIndex rset, cset, rroot;
+ for (StorageIndex col = 0; col < nc; col++)
+ {
+ found_diag = col>=m;
+ pp(col) = col;
+ cset = col;
+ root(cset) = col;
+ parent(col) = nc;
+ /* The diagonal element is treated here even if it does not exist in the matrix
+ * hence the loop is executed once more */
+ StorageIndex pcol = col;
+ if(perm) pcol = perm[col];
+ for (typename MatrixType::InnerIterator it(mat, pcol); it||!found_diag; ++it)
+ { // A sequence of interleaved find and union is performed
+ Index i = col;
+ if(it) i = it.index();
+ if (i == col) found_diag = true;
+
+ StorageIndex row = firstRowElt(i);
+ if (row >= col) continue;
+ rset = internal::etree_find(row, pp); // Find the name of the set containing row
+ rroot = root(rset);
+ if (rroot != col)
+ {
+ parent(rroot) = col;
+ pp(cset) = rset;
+ cset = rset;
+ root(cset) = col;
+ }
+ }
+ }
+ return 0;
+}
+
+/**
+ * Depth-first search from vertex n. No recursion.
+ * This routine was contributed by Cédric Doucet, CEDRAT Group, Meylan, France.
+*/
+template <typename IndexVector>
+void nr_etdfs (typename IndexVector::Scalar n, IndexVector& parent, IndexVector& first_kid, IndexVector& next_kid, IndexVector& post, typename IndexVector::Scalar postnum)
+{
+ typedef typename IndexVector::Scalar StorageIndex;
+ StorageIndex current = n, first, next;
+ while (postnum != n)
+ {
+ // No kid for the current node
+ first = first_kid(current);
+
+ // no kid for the current node
+ if (first == -1)
+ {
+ // Numbering this node because it has no kid
+ post(current) = postnum++;
+
+ // looking for the next kid
+ next = next_kid(current);
+ while (next == -1)
+ {
+ // No more kids : back to the parent node
+ current = parent(current);
+ // numbering the parent node
+ post(current) = postnum++;
+
+ // Get the next kid
+ next = next_kid(current);
+ }
+ // stopping criterion
+ if (postnum == n+1) return;
+
+ // Updating current node
+ current = next;
+ }
+ else
+ {
+ current = first;
+ }
+ }
+}
+
+
+/**
+ * \brief Post order a tree
+ * \param n the number of nodes
+ * \param parent Input tree
+ * \param post postordered tree
+ */
+template <typename IndexVector>
+void treePostorder(typename IndexVector::Scalar n, IndexVector& parent, IndexVector& post)
+{
+ typedef typename IndexVector::Scalar StorageIndex;
+ IndexVector first_kid, next_kid; // Linked list of children
+ StorageIndex postnum;
+ // Allocate storage for working arrays and results
+ first_kid.resize(n+1);
+ next_kid.setZero(n+1);
+ post.setZero(n+1);
+
+ // Set up structure describing children
+ first_kid.setConstant(-1);
+ for (StorageIndex v = n-1; v >= 0; v--)
+ {
+ StorageIndex dad = parent(v);
+ next_kid(v) = first_kid(dad);
+ first_kid(dad) = v;
+ }
+
+ // Depth-first search from dummy root vertex #n
+ postnum = 0;
+ internal::nr_etdfs(n, parent, first_kid, next_kid, post, postnum);
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // SPARSE_COLETREE_H
diff --git a/Eigen/src/SparseCore/SparseCompressedBase.h b/Eigen/src/SparseCore/SparseCompressedBase.h
new file mode 100644
index 0000000..6a2c7a8
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseCompressedBase.h
@@ -0,0 +1,370 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_COMPRESSED_BASE_H
+#define EIGEN_SPARSE_COMPRESSED_BASE_H
+
+namespace Eigen {
+
+template<typename Derived> class SparseCompressedBase;
+
+namespace internal {
+
+template<typename Derived>
+struct traits<SparseCompressedBase<Derived> > : traits<Derived>
+{};
+
+} // end namespace internal
+
+/** \ingroup SparseCore_Module
+ * \class SparseCompressedBase
+ * \brief Common base class for sparse [compressed]-{row|column}-storage format.
+ *
+ * This class defines the common interface for all derived classes implementing the compressed sparse storage format, such as:
+ * - SparseMatrix
+ * - Ref<SparseMatrixType,Options>
+ * - Map<SparseMatrixType>
+ *
+ */
+template<typename Derived>
+class SparseCompressedBase
+ : public SparseMatrixBase<Derived>
+{
+ public:
+ typedef SparseMatrixBase<Derived> Base;
+ EIGEN_SPARSE_PUBLIC_INTERFACE(SparseCompressedBase)
+ using Base::operator=;
+ using Base::IsRowMajor;
+
+ class InnerIterator;
+ class ReverseInnerIterator;
+
+ protected:
+ typedef typename Base::IndexVector IndexVector;
+ Eigen::Map<IndexVector> innerNonZeros() { return Eigen::Map<IndexVector>(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); }
+ const Eigen::Map<const IndexVector> innerNonZeros() const { return Eigen::Map<const IndexVector>(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); }
+
+ public:
+
+ /** \returns the number of non zero coefficients */
+ inline Index nonZeros() const
+ {
+ if(Derived::IsVectorAtCompileTime && outerIndexPtr()==0)
+ return derived().nonZeros();
+ else if(isCompressed())
+ return outerIndexPtr()[derived().outerSize()]-outerIndexPtr()[0];
+ else if(derived().outerSize()==0)
+ return 0;
+ else
+ return innerNonZeros().sum();
+ }
+
+ /** \returns a const pointer to the array of values.
+ * This function is aimed at interoperability with other libraries.
+ * \sa innerIndexPtr(), outerIndexPtr() */
+ inline const Scalar* valuePtr() const { return derived().valuePtr(); }
+ /** \returns a non-const pointer to the array of values.
+ * This function is aimed at interoperability with other libraries.
+ * \sa innerIndexPtr(), outerIndexPtr() */
+ inline Scalar* valuePtr() { return derived().valuePtr(); }
+
+ /** \returns a const pointer to the array of inner indices.
+ * This function is aimed at interoperability with other libraries.
+ * \sa valuePtr(), outerIndexPtr() */
+ inline const StorageIndex* innerIndexPtr() const { return derived().innerIndexPtr(); }
+ /** \returns a non-const pointer to the array of inner indices.
+ * This function is aimed at interoperability with other libraries.
+ * \sa valuePtr(), outerIndexPtr() */
+ inline StorageIndex* innerIndexPtr() { return derived().innerIndexPtr(); }
+
+ /** \returns a const pointer to the array of the starting positions of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \warning it returns the null pointer 0 for SparseVector
+ * \sa valuePtr(), innerIndexPtr() */
+ inline const StorageIndex* outerIndexPtr() const { return derived().outerIndexPtr(); }
+ /** \returns a non-const pointer to the array of the starting positions of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \warning it returns the null pointer 0 for SparseVector
+ * \sa valuePtr(), innerIndexPtr() */
+ inline StorageIndex* outerIndexPtr() { return derived().outerIndexPtr(); }
+
+ /** \returns a const pointer to the array of the number of non zeros of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \warning it returns the null pointer 0 in compressed mode */
+ inline const StorageIndex* innerNonZeroPtr() const { return derived().innerNonZeroPtr(); }
+ /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \warning it returns the null pointer 0 in compressed mode */
+ inline StorageIndex* innerNonZeroPtr() { return derived().innerNonZeroPtr(); }
+
+ /** \returns whether \c *this is in compressed form. */
+ inline bool isCompressed() const { return innerNonZeroPtr()==0; }
+
+ /** \returns a read-only view of the stored coefficients as a 1D array expression.
+ *
+ * \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise.
+ *
+ * \sa valuePtr(), isCompressed() */
+ const Map<const Array<Scalar,Dynamic,1> > coeffs() const { eigen_assert(isCompressed()); return Array<Scalar,Dynamic,1>::Map(valuePtr(),nonZeros()); }
+
+ /** \returns a read-write view of the stored coefficients as a 1D array expression
+ *
+ * \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise.
+ *
+ * Here is an example:
+ * \include SparseMatrix_coeffs.cpp
+ * and the output is:
+ * \include SparseMatrix_coeffs.out
+ *
+ * \sa valuePtr(), isCompressed() */
+ Map<Array<Scalar,Dynamic,1> > coeffs() { eigen_assert(isCompressed()); return Array<Scalar,Dynamic,1>::Map(valuePtr(),nonZeros()); }
+
+ protected:
+ /** Default constructor. Do nothing. */
+ SparseCompressedBase() {}
+
+ /** \internal return the index of the coeff at (row,col) or just before if it does not exist.
+ * This is an analogue of std::lower_bound.
+ */
+ internal::LowerBoundIndex lower_bound(Index row, Index col) const
+ {
+ eigen_internal_assert(row>=0 && row<this->rows() && col>=0 && col<this->cols());
+
+ const Index outer = Derived::IsRowMajor ? row : col;
+ const Index inner = Derived::IsRowMajor ? col : row;
+
+ Index start = this->outerIndexPtr()[outer];
+ Index end = this->isCompressed() ? this->outerIndexPtr()[outer+1] : this->outerIndexPtr()[outer] + this->innerNonZeroPtr()[outer];
+ eigen_assert(end>=start && "you are using a non finalized sparse matrix or written coefficient does not exist");
+ internal::LowerBoundIndex p;
+ p.value = std::lower_bound(this->innerIndexPtr()+start, this->innerIndexPtr()+end,inner) - this->innerIndexPtr();
+ p.found = (p.value<end) && (this->innerIndexPtr()[p.value]==inner);
+ return p;
+ }
+
+ friend struct internal::evaluator<SparseCompressedBase<Derived> >;
+
+ private:
+ template<typename OtherDerived> explicit SparseCompressedBase(const SparseCompressedBase<OtherDerived>&);
+};
+
+template<typename Derived>
+class SparseCompressedBase<Derived>::InnerIterator
+{
+ public:
+ InnerIterator()
+ : m_values(0), m_indices(0), m_outer(0), m_id(0), m_end(0)
+ {}
+
+ InnerIterator(const InnerIterator& other)
+ : m_values(other.m_values), m_indices(other.m_indices), m_outer(other.m_outer), m_id(other.m_id), m_end(other.m_end)
+ {}
+
+ InnerIterator& operator=(const InnerIterator& other)
+ {
+ m_values = other.m_values;
+ m_indices = other.m_indices;
+ const_cast<OuterType&>(m_outer).setValue(other.m_outer.value());
+ m_id = other.m_id;
+ m_end = other.m_end;
+ return *this;
+ }
+
+ InnerIterator(const SparseCompressedBase& mat, Index outer)
+ : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer)
+ {
+ if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0)
+ {
+ m_id = 0;
+ m_end = mat.nonZeros();
+ }
+ else
+ {
+ m_id = mat.outerIndexPtr()[outer];
+ if(mat.isCompressed())
+ m_end = mat.outerIndexPtr()[outer+1];
+ else
+ m_end = m_id + mat.innerNonZeroPtr()[outer];
+ }
+ }
+
+ explicit InnerIterator(const SparseCompressedBase& mat)
+ : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_id(0), m_end(mat.nonZeros())
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
+ }
+
+ explicit InnerIterator(const internal::CompressedStorage<Scalar,StorageIndex>& data)
+ : m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_id(0), m_end(data.size())
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
+ }
+
+ inline InnerIterator& operator++() { m_id++; return *this; }
+ inline InnerIterator& operator+=(Index i) { m_id += i ; return *this; }
+
+ inline InnerIterator operator+(Index i)
+ {
+ InnerIterator result = *this;
+ result += i;
+ return result;
+ }
+
+ inline const Scalar& value() const { return m_values[m_id]; }
+ inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
+
+ inline StorageIndex index() const { return m_indices[m_id]; }
+ inline Index outer() const { return m_outer.value(); }
+ inline Index row() const { return IsRowMajor ? m_outer.value() : index(); }
+ inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
+
+ inline operator bool() const { return (m_id < m_end); }
+
+ protected:
+ const Scalar* m_values;
+ const StorageIndex* m_indices;
+ typedef internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> OuterType;
+ const OuterType m_outer;
+ Index m_id;
+ Index m_end;
+ private:
+ // If you get here, then you're not using the right InnerIterator type, e.g.:
+ // SparseMatrix<double,RowMajor> A;
+ // SparseMatrix<double>::InnerIterator it(A,0);
+ template<typename T> InnerIterator(const SparseMatrixBase<T>&, Index outer);
+};
+
+template<typename Derived>
+class SparseCompressedBase<Derived>::ReverseInnerIterator
+{
+ public:
+ ReverseInnerIterator(const SparseCompressedBase& mat, Index outer)
+ : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer)
+ {
+ if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0)
+ {
+ m_start = 0;
+ m_id = mat.nonZeros();
+ }
+ else
+ {
+ m_start = mat.outerIndexPtr()[outer];
+ if(mat.isCompressed())
+ m_id = mat.outerIndexPtr()[outer+1];
+ else
+ m_id = m_start + mat.innerNonZeroPtr()[outer];
+ }
+ }
+
+ explicit ReverseInnerIterator(const SparseCompressedBase& mat)
+ : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_start(0), m_id(mat.nonZeros())
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
+ }
+
+ explicit ReverseInnerIterator(const internal::CompressedStorage<Scalar,StorageIndex>& data)
+ : m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_start(0), m_id(data.size())
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
+ }
+
+ inline ReverseInnerIterator& operator--() { --m_id; return *this; }
+ inline ReverseInnerIterator& operator-=(Index i) { m_id -= i; return *this; }
+
+ inline ReverseInnerIterator operator-(Index i)
+ {
+ ReverseInnerIterator result = *this;
+ result -= i;
+ return result;
+ }
+
+ inline const Scalar& value() const { return m_values[m_id-1]; }
+ inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }
+
+ inline StorageIndex index() const { return m_indices[m_id-1]; }
+ inline Index outer() const { return m_outer.value(); }
+ inline Index row() const { return IsRowMajor ? m_outer.value() : index(); }
+ inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
+
+ inline operator bool() const { return (m_id > m_start); }
+
+ protected:
+ const Scalar* m_values;
+ const StorageIndex* m_indices;
+ typedef internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> OuterType;
+ const OuterType m_outer;
+ Index m_start;
+ Index m_id;
+};
+
+namespace internal {
+
+template<typename Derived>
+struct evaluator<SparseCompressedBase<Derived> >
+ : evaluator_base<Derived>
+{
+ typedef typename Derived::Scalar Scalar;
+ typedef typename Derived::InnerIterator InnerIterator;
+
+ enum {
+ CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ Flags = Derived::Flags
+ };
+
+ evaluator() : m_matrix(0), m_zero(0)
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+ explicit evaluator(const Derived &mat) : m_matrix(&mat), m_zero(0)
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ inline Index nonZerosEstimate() const {
+ return m_matrix->nonZeros();
+ }
+
+ operator Derived&() { return m_matrix->const_cast_derived(); }
+ operator const Derived&() const { return *m_matrix; }
+
+ typedef typename DenseCoeffsBase<Derived,ReadOnlyAccessors>::CoeffReturnType CoeffReturnType;
+ const Scalar& coeff(Index row, Index col) const
+ {
+ Index p = find(row,col);
+
+ if(p==Dynamic)
+ return m_zero;
+ else
+ return m_matrix->const_cast_derived().valuePtr()[p];
+ }
+
+ Scalar& coeffRef(Index row, Index col)
+ {
+ Index p = find(row,col);
+ eigen_assert(p!=Dynamic && "written coefficient does not exist");
+ return m_matrix->const_cast_derived().valuePtr()[p];
+ }
+
+protected:
+
+ Index find(Index row, Index col) const
+ {
+ internal::LowerBoundIndex p = m_matrix->lower_bound(row,col);
+ return p.found ? p.value : Dynamic;
+ }
+
+ const Derived *m_matrix;
+ const Scalar m_zero;
+};
+
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_COMPRESSED_BASE_H
diff --git a/Eigen/src/SparseCore/SparseCwiseBinaryOp.h b/Eigen/src/SparseCore/SparseCwiseBinaryOp.h
new file mode 100644
index 0000000..9b0d3f9
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseCwiseBinaryOp.h
@@ -0,0 +1,722 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_CWISE_BINARY_OP_H
+#define EIGEN_SPARSE_CWISE_BINARY_OP_H
+
+namespace Eigen {
+
+// Here we have to handle 3 cases:
+// 1 - sparse op dense
+// 2 - dense op sparse
+// 3 - sparse op sparse
+// We also need to implement a 4th iterator for:
+// 4 - dense op dense
+// Finally, we also need to distinguish between the product and other operations :
+// configuration returned mode
+// 1 - sparse op dense product sparse
+// generic dense
+// 2 - dense op sparse product sparse
+// generic dense
+// 3 - sparse op sparse product sparse
+// generic sparse
+// 4 - dense op dense product dense
+// generic dense
+//
+// TODO to ease compiler job, we could specialize product/quotient with a scalar
+// and fallback to cwise-unary evaluator using bind1st_op and bind2nd_op.
+
+template<typename BinaryOp, typename Lhs, typename Rhs>
+class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Sparse>
+ : public SparseMatrixBase<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
+{
+ public:
+ typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
+ typedef SparseMatrixBase<Derived> Base;
+ EIGEN_SPARSE_PUBLIC_INTERFACE(Derived)
+ CwiseBinaryOpImpl()
+ {
+ EIGEN_STATIC_ASSERT((
+ (!internal::is_same<typename internal::traits<Lhs>::StorageKind,
+ typename internal::traits<Rhs>::StorageKind>::value)
+ || ((internal::evaluator<Lhs>::Flags&RowMajorBit) == (internal::evaluator<Rhs>::Flags&RowMajorBit))),
+ THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH);
+ }
+};
+
+namespace internal {
+
+
+// Generic "sparse OP sparse"
+template<typename XprType> struct binary_sparse_evaluator;
+
+template<typename BinaryOp, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IteratorBased, IteratorBased>
+ : evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
+{
+protected:
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
+ typedef typename evaluator<Rhs>::InnerIterator RhsIterator;
+ typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+ typedef typename traits<XprType>::Scalar Scalar;
+ typedef typename XprType::StorageIndex StorageIndex;
+public:
+
+ class InnerIterator
+ {
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer)
+ : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor)
+ {
+ this->operator++();
+ }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ if (m_lhsIter && m_rhsIter && (m_lhsIter.index() == m_rhsIter.index()))
+ {
+ m_id = m_lhsIter.index();
+ m_value = m_functor(m_lhsIter.value(), m_rhsIter.value());
+ ++m_lhsIter;
+ ++m_rhsIter;
+ }
+ else if (m_lhsIter && (!m_rhsIter || (m_lhsIter.index() < m_rhsIter.index())))
+ {
+ m_id = m_lhsIter.index();
+ m_value = m_functor(m_lhsIter.value(), Scalar(0));
+ ++m_lhsIter;
+ }
+ else if (m_rhsIter && (!m_lhsIter || (m_lhsIter.index() > m_rhsIter.index())))
+ {
+ m_id = m_rhsIter.index();
+ m_value = m_functor(Scalar(0), m_rhsIter.value());
+ ++m_rhsIter;
+ }
+ else
+ {
+ m_value = Scalar(0); // this is to avoid a compilation warning
+ m_id = -1;
+ }
+ return *this;
+ }
+
+ EIGEN_STRONG_INLINE Scalar value() const { return m_value; }
+
+ EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; }
+ EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); }
+ EIGEN_STRONG_INLINE Index row() const { return Lhs::IsRowMajor ? m_lhsIter.row() : index(); }
+ EIGEN_STRONG_INLINE Index col() const { return Lhs::IsRowMajor ? index() : m_lhsIter.col(); }
+
+ EIGEN_STRONG_INLINE operator bool() const { return m_id>=0; }
+
+ protected:
+ LhsIterator m_lhsIter;
+ RhsIterator m_rhsIter;
+ const BinaryOp& m_functor;
+ Scalar m_value;
+ StorageIndex m_id;
+ };
+
+
+ enum {
+ CoeffReadCost = int(evaluator<Lhs>::CoeffReadCost) + int(evaluator<Rhs>::CoeffReadCost) + int(functor_traits<BinaryOp>::Cost),
+ Flags = XprType::Flags
+ };
+
+ explicit binary_evaluator(const XprType& xpr)
+ : m_functor(xpr.functor()),
+ m_lhsImpl(xpr.lhs()),
+ m_rhsImpl(xpr.rhs())
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ inline Index nonZerosEstimate() const {
+ return m_lhsImpl.nonZerosEstimate() + m_rhsImpl.nonZerosEstimate();
+ }
+
+protected:
+ const BinaryOp m_functor;
+ evaluator<Lhs> m_lhsImpl;
+ evaluator<Rhs> m_rhsImpl;
+};
+
+// dense op sparse
+template<typename BinaryOp, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IndexBased, IteratorBased>
+ : evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
+{
+protected:
+ typedef typename evaluator<Rhs>::InnerIterator RhsIterator;
+ typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+ typedef typename traits<XprType>::Scalar Scalar;
+ typedef typename XprType::StorageIndex StorageIndex;
+public:
+
+ class InnerIterator
+ {
+ enum { IsRowMajor = (int(Rhs::Flags)&RowMajorBit)==RowMajorBit };
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer)
+ : m_lhsEval(aEval.m_lhsImpl), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor), m_value(0), m_id(-1), m_innerSize(aEval.m_expr.rhs().innerSize())
+ {
+ this->operator++();
+ }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ ++m_id;
+ if(m_id<m_innerSize)
+ {
+ Scalar lhsVal = m_lhsEval.coeff(IsRowMajor?m_rhsIter.outer():m_id,
+ IsRowMajor?m_id:m_rhsIter.outer());
+ if(m_rhsIter && m_rhsIter.index()==m_id)
+ {
+ m_value = m_functor(lhsVal, m_rhsIter.value());
+ ++m_rhsIter;
+ }
+ else
+ m_value = m_functor(lhsVal, Scalar(0));
+ }
+
+ return *this;
+ }
+
+ EIGEN_STRONG_INLINE Scalar value() const { eigen_internal_assert(m_id<m_innerSize); return m_value; }
+
+ EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; }
+ EIGEN_STRONG_INLINE Index outer() const { return m_rhsIter.outer(); }
+ EIGEN_STRONG_INLINE Index row() const { return IsRowMajor ? m_rhsIter.outer() : m_id; }
+ EIGEN_STRONG_INLINE Index col() const { return IsRowMajor ? m_id : m_rhsIter.outer(); }
+
+ EIGEN_STRONG_INLINE operator bool() const { return m_id<m_innerSize; }
+
+ protected:
+ const evaluator<Lhs> &m_lhsEval;
+ RhsIterator m_rhsIter;
+ const BinaryOp& m_functor;
+ Scalar m_value;
+ StorageIndex m_id;
+ StorageIndex m_innerSize;
+ };
+
+
+ enum {
+ CoeffReadCost = int(evaluator<Lhs>::CoeffReadCost) + int(evaluator<Rhs>::CoeffReadCost) + int(functor_traits<BinaryOp>::Cost),
+ Flags = XprType::Flags
+ };
+
+ explicit binary_evaluator(const XprType& xpr)
+ : m_functor(xpr.functor()),
+ m_lhsImpl(xpr.lhs()),
+ m_rhsImpl(xpr.rhs()),
+ m_expr(xpr)
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ inline Index nonZerosEstimate() const {
+ return m_expr.size();
+ }
+
+protected:
+ const BinaryOp m_functor;
+ evaluator<Lhs> m_lhsImpl;
+ evaluator<Rhs> m_rhsImpl;
+ const XprType &m_expr;
+};
+
+// sparse op dense
+template<typename BinaryOp, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IteratorBased, IndexBased>
+ : evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
+{
+protected:
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
+ typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+ typedef typename traits<XprType>::Scalar Scalar;
+ typedef typename XprType::StorageIndex StorageIndex;
+public:
+
+ class InnerIterator
+ {
+ enum { IsRowMajor = (int(Lhs::Flags)&RowMajorBit)==RowMajorBit };
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer)
+ : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsEval(aEval.m_rhsImpl), m_functor(aEval.m_functor), m_value(0), m_id(-1), m_innerSize(aEval.m_expr.lhs().innerSize())
+ {
+ this->operator++();
+ }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ ++m_id;
+ if(m_id<m_innerSize)
+ {
+ Scalar rhsVal = m_rhsEval.coeff(IsRowMajor?m_lhsIter.outer():m_id,
+ IsRowMajor?m_id:m_lhsIter.outer());
+ if(m_lhsIter && m_lhsIter.index()==m_id)
+ {
+ m_value = m_functor(m_lhsIter.value(), rhsVal);
+ ++m_lhsIter;
+ }
+ else
+ m_value = m_functor(Scalar(0),rhsVal);
+ }
+
+ return *this;
+ }
+
+ EIGEN_STRONG_INLINE Scalar value() const { eigen_internal_assert(m_id<m_innerSize); return m_value; }
+
+ EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; }
+ EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); }
+ EIGEN_STRONG_INLINE Index row() const { return IsRowMajor ? m_lhsIter.outer() : m_id; }
+ EIGEN_STRONG_INLINE Index col() const { return IsRowMajor ? m_id : m_lhsIter.outer(); }
+
+ EIGEN_STRONG_INLINE operator bool() const { return m_id<m_innerSize; }
+
+ protected:
+ LhsIterator m_lhsIter;
+ const evaluator<Rhs> &m_rhsEval;
+ const BinaryOp& m_functor;
+ Scalar m_value;
+ StorageIndex m_id;
+ StorageIndex m_innerSize;
+ };
+
+
+ enum {
+ CoeffReadCost = int(evaluator<Lhs>::CoeffReadCost) + int(evaluator<Rhs>::CoeffReadCost) + int(functor_traits<BinaryOp>::Cost),
+ Flags = XprType::Flags
+ };
+
+ explicit binary_evaluator(const XprType& xpr)
+ : m_functor(xpr.functor()),
+ m_lhsImpl(xpr.lhs()),
+ m_rhsImpl(xpr.rhs()),
+ m_expr(xpr)
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ inline Index nonZerosEstimate() const {
+ return m_expr.size();
+ }
+
+protected:
+ const BinaryOp m_functor;
+ evaluator<Lhs> m_lhsImpl;
+ evaluator<Rhs> m_rhsImpl;
+ const XprType &m_expr;
+};
+
+template<typename T,
+ typename LhsKind = typename evaluator_traits<typename T::Lhs>::Kind,
+ typename RhsKind = typename evaluator_traits<typename T::Rhs>::Kind,
+ typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
+ typename RhsScalar = typename traits<typename T::Rhs>::Scalar> struct sparse_conjunction_evaluator;
+
+// "sparse .* sparse"
+template<typename T1, typename T2, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs>, IteratorBased, IteratorBased>
+ : sparse_conjunction_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> >
+{
+ typedef CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> XprType;
+ typedef sparse_conjunction_evaluator<XprType> Base;
+ explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
+};
+// "dense .* sparse"
+template<typename T1, typename T2, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs>, IndexBased, IteratorBased>
+ : sparse_conjunction_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> >
+{
+ typedef CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> XprType;
+ typedef sparse_conjunction_evaluator<XprType> Base;
+ explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
+};
+// "sparse .* dense"
+template<typename T1, typename T2, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs>, IteratorBased, IndexBased>
+ : sparse_conjunction_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> >
+{
+ typedef CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> XprType;
+ typedef sparse_conjunction_evaluator<XprType> Base;
+ explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
+};
+
+// "sparse ./ dense"
+template<typename T1, typename T2, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<scalar_quotient_op<T1,T2>, Lhs, Rhs>, IteratorBased, IndexBased>
+ : sparse_conjunction_evaluator<CwiseBinaryOp<scalar_quotient_op<T1,T2>, Lhs, Rhs> >
+{
+ typedef CwiseBinaryOp<scalar_quotient_op<T1,T2>, Lhs, Rhs> XprType;
+ typedef sparse_conjunction_evaluator<XprType> Base;
+ explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
+};
+
+// "sparse && sparse"
+template<typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs>, IteratorBased, IteratorBased>
+ : sparse_conjunction_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> >
+{
+ typedef CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> XprType;
+ typedef sparse_conjunction_evaluator<XprType> Base;
+ explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
+};
+// "dense && sparse"
+template<typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs>, IndexBased, IteratorBased>
+ : sparse_conjunction_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> >
+{
+ typedef CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> XprType;
+ typedef sparse_conjunction_evaluator<XprType> Base;
+ explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
+};
+// "sparse && dense"
+template<typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs>, IteratorBased, IndexBased>
+ : sparse_conjunction_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> >
+{
+ typedef CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> XprType;
+ typedef sparse_conjunction_evaluator<XprType> Base;
+ explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
+};
+
+// "sparse ^ sparse"
+template<typename XprType>
+struct sparse_conjunction_evaluator<XprType, IteratorBased, IteratorBased>
+ : evaluator_base<XprType>
+{
+protected:
+ typedef typename XprType::Functor BinaryOp;
+ typedef typename XprType::Lhs LhsArg;
+ typedef typename XprType::Rhs RhsArg;
+ typedef typename evaluator<LhsArg>::InnerIterator LhsIterator;
+ typedef typename evaluator<RhsArg>::InnerIterator RhsIterator;
+ typedef typename XprType::StorageIndex StorageIndex;
+ typedef typename traits<XprType>::Scalar Scalar;
+public:
+
+ class InnerIterator
+ {
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer)
+ : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor)
+ {
+ while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index()))
+ {
+ if (m_lhsIter.index() < m_rhsIter.index())
+ ++m_lhsIter;
+ else
+ ++m_rhsIter;
+ }
+ }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ ++m_lhsIter;
+ ++m_rhsIter;
+ while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index()))
+ {
+ if (m_lhsIter.index() < m_rhsIter.index())
+ ++m_lhsIter;
+ else
+ ++m_rhsIter;
+ }
+ return *this;
+ }
+
+ EIGEN_STRONG_INLINE Scalar value() const { return m_functor(m_lhsIter.value(), m_rhsIter.value()); }
+
+ EIGEN_STRONG_INLINE StorageIndex index() const { return m_lhsIter.index(); }
+ EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); }
+ EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); }
+ EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); }
+
+ EIGEN_STRONG_INLINE operator bool() const { return (m_lhsIter && m_rhsIter); }
+
+ protected:
+ LhsIterator m_lhsIter;
+ RhsIterator m_rhsIter;
+ const BinaryOp& m_functor;
+ };
+
+
+ enum {
+ CoeffReadCost = int(evaluator<LhsArg>::CoeffReadCost) + int(evaluator<RhsArg>::CoeffReadCost) + int(functor_traits<BinaryOp>::Cost),
+ Flags = XprType::Flags
+ };
+
+ explicit sparse_conjunction_evaluator(const XprType& xpr)
+ : m_functor(xpr.functor()),
+ m_lhsImpl(xpr.lhs()),
+ m_rhsImpl(xpr.rhs())
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ inline Index nonZerosEstimate() const {
+ return (std::min)(m_lhsImpl.nonZerosEstimate(), m_rhsImpl.nonZerosEstimate());
+ }
+
+protected:
+ const BinaryOp m_functor;
+ evaluator<LhsArg> m_lhsImpl;
+ evaluator<RhsArg> m_rhsImpl;
+};
+
+// "dense ^ sparse"
+template<typename XprType>
+struct sparse_conjunction_evaluator<XprType, IndexBased, IteratorBased>
+ : evaluator_base<XprType>
+{
+protected:
+ typedef typename XprType::Functor BinaryOp;
+ typedef typename XprType::Lhs LhsArg;
+ typedef typename XprType::Rhs RhsArg;
+ typedef evaluator<LhsArg> LhsEvaluator;
+ typedef typename evaluator<RhsArg>::InnerIterator RhsIterator;
+ typedef typename XprType::StorageIndex StorageIndex;
+ typedef typename traits<XprType>::Scalar Scalar;
+public:
+
+ class InnerIterator
+ {
+ enum { IsRowMajor = (int(RhsArg::Flags)&RowMajorBit)==RowMajorBit };
+
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer)
+ : m_lhsEval(aEval.m_lhsImpl), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor), m_outer(outer)
+ {}
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ ++m_rhsIter;
+ return *this;
+ }
+
+ EIGEN_STRONG_INLINE Scalar value() const
+ { return m_functor(m_lhsEval.coeff(IsRowMajor?m_outer:m_rhsIter.index(),IsRowMajor?m_rhsIter.index():m_outer), m_rhsIter.value()); }
+
+ EIGEN_STRONG_INLINE StorageIndex index() const { return m_rhsIter.index(); }
+ EIGEN_STRONG_INLINE Index outer() const { return m_rhsIter.outer(); }
+ EIGEN_STRONG_INLINE Index row() const { return m_rhsIter.row(); }
+ EIGEN_STRONG_INLINE Index col() const { return m_rhsIter.col(); }
+
+ EIGEN_STRONG_INLINE operator bool() const { return m_rhsIter; }
+
+ protected:
+ const LhsEvaluator &m_lhsEval;
+ RhsIterator m_rhsIter;
+ const BinaryOp& m_functor;
+ const Index m_outer;
+ };
+
+
+ enum {
+ CoeffReadCost = int(evaluator<LhsArg>::CoeffReadCost) + int(evaluator<RhsArg>::CoeffReadCost) + int(functor_traits<BinaryOp>::Cost),
+ Flags = XprType::Flags
+ };
+
+ explicit sparse_conjunction_evaluator(const XprType& xpr)
+ : m_functor(xpr.functor()),
+ m_lhsImpl(xpr.lhs()),
+ m_rhsImpl(xpr.rhs())
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ inline Index nonZerosEstimate() const {
+ return m_rhsImpl.nonZerosEstimate();
+ }
+
+protected:
+ const BinaryOp m_functor;
+ evaluator<LhsArg> m_lhsImpl;
+ evaluator<RhsArg> m_rhsImpl;
+};
+
+// "sparse ^ dense"
+template<typename XprType>
+struct sparse_conjunction_evaluator<XprType, IteratorBased, IndexBased>
+ : evaluator_base<XprType>
+{
+protected:
+ typedef typename XprType::Functor BinaryOp;
+ typedef typename XprType::Lhs LhsArg;
+ typedef typename XprType::Rhs RhsArg;
+ typedef typename evaluator<LhsArg>::InnerIterator LhsIterator;
+ typedef evaluator<RhsArg> RhsEvaluator;
+ typedef typename XprType::StorageIndex StorageIndex;
+ typedef typename traits<XprType>::Scalar Scalar;
+public:
+
+ class InnerIterator
+ {
+ enum { IsRowMajor = (int(LhsArg::Flags)&RowMajorBit)==RowMajorBit };
+
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer)
+ : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsEval(aEval.m_rhsImpl), m_functor(aEval.m_functor), m_outer(outer)
+ {}
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ ++m_lhsIter;
+ return *this;
+ }
+
+ EIGEN_STRONG_INLINE Scalar value() const
+ { return m_functor(m_lhsIter.value(),
+ m_rhsEval.coeff(IsRowMajor?m_outer:m_lhsIter.index(),IsRowMajor?m_lhsIter.index():m_outer)); }
+
+ EIGEN_STRONG_INLINE StorageIndex index() const { return m_lhsIter.index(); }
+ EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); }
+ EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); }
+ EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); }
+
+ EIGEN_STRONG_INLINE operator bool() const { return m_lhsIter; }
+
+ protected:
+ LhsIterator m_lhsIter;
+ const evaluator<RhsArg> &m_rhsEval;
+ const BinaryOp& m_functor;
+ const Index m_outer;
+ };
+
+
+ enum {
+ CoeffReadCost = int(evaluator<LhsArg>::CoeffReadCost) + int(evaluator<RhsArg>::CoeffReadCost) + int(functor_traits<BinaryOp>::Cost),
+ Flags = XprType::Flags
+ };
+
+ explicit sparse_conjunction_evaluator(const XprType& xpr)
+ : m_functor(xpr.functor()),
+ m_lhsImpl(xpr.lhs()),
+ m_rhsImpl(xpr.rhs())
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ inline Index nonZerosEstimate() const {
+ return m_lhsImpl.nonZerosEstimate();
+ }
+
+protected:
+ const BinaryOp m_functor;
+ evaluator<LhsArg> m_lhsImpl;
+ evaluator<RhsArg> m_rhsImpl;
+};
+
+}
+
+/***************************************************************************
+* Implementation of SparseMatrixBase and SparseCwise functions/operators
+***************************************************************************/
+
+template<typename Derived>
+template<typename OtherDerived>
+Derived& SparseMatrixBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
+{
+ call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
+ return derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+Derived& SparseMatrixBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
+{
+ call_assignment(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
+ return derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+EIGEN_STRONG_INLINE Derived &
+SparseMatrixBase<Derived>::operator-=(const SparseMatrixBase<OtherDerived> &other)
+{
+ return derived() = derived() - other.derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+EIGEN_STRONG_INLINE Derived &
+SparseMatrixBase<Derived>::operator+=(const SparseMatrixBase<OtherDerived>& other)
+{
+ return derived() = derived() + other.derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+Derived& SparseMatrixBase<Derived>::operator+=(const DiagonalBase<OtherDerived>& other)
+{
+ call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
+ return derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+Derived& SparseMatrixBase<Derived>::operator-=(const DiagonalBase<OtherDerived>& other)
+{
+ call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op<Scalar,typename OtherDerived::Scalar>());
+ return derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+EIGEN_STRONG_INLINE const typename SparseMatrixBase<Derived>::template CwiseProductDenseReturnType<OtherDerived>::Type
+SparseMatrixBase<Derived>::cwiseProduct(const MatrixBase<OtherDerived> &other) const
+{
+ return typename CwiseProductDenseReturnType<OtherDerived>::Type(derived(), other.derived());
+}
+
+template<typename DenseDerived, typename SparseDerived>
+EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_sum_op<typename DenseDerived::Scalar,typename SparseDerived::Scalar>, const DenseDerived, const SparseDerived>
+operator+(const MatrixBase<DenseDerived> &a, const SparseMatrixBase<SparseDerived> &b)
+{
+ return CwiseBinaryOp<internal::scalar_sum_op<typename DenseDerived::Scalar,typename SparseDerived::Scalar>, const DenseDerived, const SparseDerived>(a.derived(), b.derived());
+}
+
+template<typename SparseDerived, typename DenseDerived>
+EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_sum_op<typename SparseDerived::Scalar,typename DenseDerived::Scalar>, const SparseDerived, const DenseDerived>
+operator+(const SparseMatrixBase<SparseDerived> &a, const MatrixBase<DenseDerived> &b)
+{
+ return CwiseBinaryOp<internal::scalar_sum_op<typename SparseDerived::Scalar,typename DenseDerived::Scalar>, const SparseDerived, const DenseDerived>(a.derived(), b.derived());
+}
+
+template<typename DenseDerived, typename SparseDerived>
+EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_difference_op<typename DenseDerived::Scalar,typename SparseDerived::Scalar>, const DenseDerived, const SparseDerived>
+operator-(const MatrixBase<DenseDerived> &a, const SparseMatrixBase<SparseDerived> &b)
+{
+ return CwiseBinaryOp<internal::scalar_difference_op<typename DenseDerived::Scalar,typename SparseDerived::Scalar>, const DenseDerived, const SparseDerived>(a.derived(), b.derived());
+}
+
+template<typename SparseDerived, typename DenseDerived>
+EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_difference_op<typename SparseDerived::Scalar,typename DenseDerived::Scalar>, const SparseDerived, const DenseDerived>
+operator-(const SparseMatrixBase<SparseDerived> &a, const MatrixBase<DenseDerived> &b)
+{
+ return CwiseBinaryOp<internal::scalar_difference_op<typename SparseDerived::Scalar,typename DenseDerived::Scalar>, const SparseDerived, const DenseDerived>(a.derived(), b.derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_CWISE_BINARY_OP_H
diff --git a/Eigen/src/SparseCore/SparseCwiseUnaryOp.h b/Eigen/src/SparseCore/SparseCwiseUnaryOp.h
new file mode 100644
index 0000000..32dac0f
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseCwiseUnaryOp.h
@@ -0,0 +1,150 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_CWISE_UNARY_OP_H
+#define EIGEN_SPARSE_CWISE_UNARY_OP_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename UnaryOp, typename ArgType>
+struct unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>
+ : public evaluator_base<CwiseUnaryOp<UnaryOp,ArgType> >
+{
+ public:
+ typedef CwiseUnaryOp<UnaryOp, ArgType> XprType;
+
+ class InnerIterator;
+
+ enum {
+ CoeffReadCost = int(evaluator<ArgType>::CoeffReadCost) + int(functor_traits<UnaryOp>::Cost),
+ Flags = XprType::Flags
+ };
+
+ explicit unary_evaluator(const XprType& op) : m_functor(op.functor()), m_argImpl(op.nestedExpression())
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost);
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ inline Index nonZerosEstimate() const {
+ return m_argImpl.nonZerosEstimate();
+ }
+
+ protected:
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+
+ const UnaryOp m_functor;
+ evaluator<ArgType> m_argImpl;
+};
+
+template<typename UnaryOp, typename ArgType>
+class unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::InnerIterator
+ : public unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::EvalIterator
+{
+ protected:
+ typedef typename XprType::Scalar Scalar;
+ typedef typename unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::EvalIterator Base;
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer)
+ : Base(unaryOp.m_argImpl,outer), m_functor(unaryOp.m_functor)
+ {}
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ { Base::operator++(); return *this; }
+
+ EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); }
+
+ protected:
+ const UnaryOp m_functor;
+ private:
+ Scalar& valueRef();
+};
+
+template<typename ViewOp, typename ArgType>
+struct unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>
+ : public evaluator_base<CwiseUnaryView<ViewOp,ArgType> >
+{
+ public:
+ typedef CwiseUnaryView<ViewOp, ArgType> XprType;
+
+ class InnerIterator;
+
+ enum {
+ CoeffReadCost = int(evaluator<ArgType>::CoeffReadCost) + int(functor_traits<ViewOp>::Cost),
+ Flags = XprType::Flags
+ };
+
+ explicit unary_evaluator(const XprType& op) : m_functor(op.functor()), m_argImpl(op.nestedExpression())
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<ViewOp>::Cost);
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ protected:
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+
+ const ViewOp m_functor;
+ evaluator<ArgType> m_argImpl;
+};
+
+template<typename ViewOp, typename ArgType>
+class unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::InnerIterator
+ : public unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::EvalIterator
+{
+ protected:
+ typedef typename XprType::Scalar Scalar;
+ typedef typename unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::EvalIterator Base;
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer)
+ : Base(unaryOp.m_argImpl,outer), m_functor(unaryOp.m_functor)
+ {}
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ { Base::operator++(); return *this; }
+
+ EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); }
+ EIGEN_STRONG_INLINE Scalar& valueRef() { return m_functor(Base::valueRef()); }
+
+ protected:
+ const ViewOp m_functor;
+};
+
+} // end namespace internal
+
+template<typename Derived>
+EIGEN_STRONG_INLINE Derived&
+SparseMatrixBase<Derived>::operator*=(const Scalar& other)
+{
+ typedef typename internal::evaluator<Derived>::InnerIterator EvalIterator;
+ internal::evaluator<Derived> thisEval(derived());
+ for (Index j=0; j<outerSize(); ++j)
+ for (EvalIterator i(thisEval,j); i; ++i)
+ i.valueRef() *= other;
+ return derived();
+}
+
+template<typename Derived>
+EIGEN_STRONG_INLINE Derived&
+SparseMatrixBase<Derived>::operator/=(const Scalar& other)
+{
+ typedef typename internal::evaluator<Derived>::InnerIterator EvalIterator;
+ internal::evaluator<Derived> thisEval(derived());
+ for (Index j=0; j<outerSize(); ++j)
+ for (EvalIterator i(thisEval,j); i; ++i)
+ i.valueRef() /= other;
+ return derived();
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_CWISE_UNARY_OP_H
diff --git a/Eigen/src/SparseCore/SparseDenseProduct.h b/Eigen/src/SparseCore/SparseDenseProduct.h
new file mode 100644
index 0000000..f005a18
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseDenseProduct.h
@@ -0,0 +1,342 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEDENSEPRODUCT_H
+#define EIGEN_SPARSEDENSEPRODUCT_H
+
+namespace Eigen {
+
+namespace internal {
+
+template <> struct product_promote_storage_type<Sparse,Dense, OuterProduct> { typedef Sparse ret; };
+template <> struct product_promote_storage_type<Dense,Sparse, OuterProduct> { typedef Sparse ret; };
+
+template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,
+ typename AlphaType,
+ int LhsStorageOrder = ((SparseLhsType::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor,
+ bool ColPerCol = ((DenseRhsType::Flags&RowMajorBit)==0) || DenseRhsType::ColsAtCompileTime==1>
+struct sparse_time_dense_product_impl;
+
+template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
+struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, RowMajor, true>
+{
+ typedef typename internal::remove_all<SparseLhsType>::type Lhs;
+ typedef typename internal::remove_all<DenseRhsType>::type Rhs;
+ typedef typename internal::remove_all<DenseResType>::type Res;
+ typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
+ typedef evaluator<Lhs> LhsEval;
+ static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
+ {
+ LhsEval lhsEval(lhs);
+
+ Index n = lhs.outerSize();
+#ifdef EIGEN_HAS_OPENMP
+ Eigen::initParallel();
+ Index threads = Eigen::nbThreads();
+#endif
+
+ for(Index c=0; c<rhs.cols(); ++c)
+ {
+#ifdef EIGEN_HAS_OPENMP
+ // This 20000 threshold has been found experimentally on 2D and 3D Poisson problems.
+ // It basically represents the minimal amount of work to be done to be worth it.
+ if(threads>1 && lhsEval.nonZerosEstimate() > 20000)
+ {
+ #pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads)
+ for(Index i=0; i<n; ++i)
+ processRow(lhsEval,rhs,res,alpha,i,c);
+ }
+ else
+#endif
+ {
+ for(Index i=0; i<n; ++i)
+ processRow(lhsEval,rhs,res,alpha,i,c);
+ }
+ }
+ }
+
+ static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha, Index i, Index col)
+ {
+ typename Res::Scalar tmp(0);
+ for(LhsInnerIterator it(lhsEval,i); it ;++it)
+ tmp += it.value() * rhs.coeff(it.index(),col);
+ res.coeffRef(i,col) += alpha * tmp;
+ }
+
+};
+
+// FIXME: what is the purpose of the following specialization? Is it for the BlockedSparse format?
+// -> let's disable it for now as it is conflicting with generic scalar*matrix and matrix*scalar operators
+// template<typename T1, typename T2/*, int _Options, typename _StrideType*/>
+// struct ScalarBinaryOpTraits<T1, Ref<T2/*, _Options, _StrideType*/> >
+// {
+// enum {
+// Defined = 1
+// };
+// typedef typename CwiseUnaryOp<scalar_multiple2_op<T1, typename T2::Scalar>, T2>::PlainObject ReturnType;
+// };
+
+template<typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
+struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, AlphaType, ColMajor, true>
+{
+ typedef typename internal::remove_all<SparseLhsType>::type Lhs;
+ typedef typename internal::remove_all<DenseRhsType>::type Rhs;
+ typedef typename internal::remove_all<DenseResType>::type Res;
+ typedef evaluator<Lhs> LhsEval;
+ typedef typename LhsEval::InnerIterator LhsInnerIterator;
+ static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
+ {
+ LhsEval lhsEval(lhs);
+ for(Index c=0; c<rhs.cols(); ++c)
+ {
+ for(Index j=0; j<lhs.outerSize(); ++j)
+ {
+// typename Res::Scalar rhs_j = alpha * rhs.coeff(j,c);
+ typename ScalarBinaryOpTraits<AlphaType, typename Rhs::Scalar>::ReturnType rhs_j(alpha * rhs.coeff(j,c));
+ for(LhsInnerIterator it(lhsEval,j); it ;++it)
+ res.coeffRef(it.index(),c) += it.value() * rhs_j;
+ }
+ }
+ }
+};
+
+template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
+struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, RowMajor, false>
+{
+ typedef typename internal::remove_all<SparseLhsType>::type Lhs;
+ typedef typename internal::remove_all<DenseRhsType>::type Rhs;
+ typedef typename internal::remove_all<DenseResType>::type Res;
+ typedef evaluator<Lhs> LhsEval;
+ typedef typename LhsEval::InnerIterator LhsInnerIterator;
+ static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
+ {
+ Index n = lhs.rows();
+ LhsEval lhsEval(lhs);
+
+#ifdef EIGEN_HAS_OPENMP
+ Eigen::initParallel();
+ Index threads = Eigen::nbThreads();
+ // This 20000 threshold has been found experimentally on 2D and 3D Poisson problems.
+ // It basically represents the minimal amount of work to be done to be worth it.
+ if(threads>1 && lhsEval.nonZerosEstimate()*rhs.cols() > 20000)
+ {
+ #pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads)
+ for(Index i=0; i<n; ++i)
+ processRow(lhsEval,rhs,res,alpha,i);
+ }
+ else
+#endif
+ {
+ for(Index i=0; i<n; ++i)
+ processRow(lhsEval, rhs, res, alpha, i);
+ }
+ }
+
+ static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, Res& res, const typename Res::Scalar& alpha, Index i)
+ {
+ typename Res::RowXpr res_i(res.row(i));
+ for(LhsInnerIterator it(lhsEval,i); it ;++it)
+ res_i += (alpha*it.value()) * rhs.row(it.index());
+ }
+};
+
+template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
+struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, ColMajor, false>
+{
+ typedef typename internal::remove_all<SparseLhsType>::type Lhs;
+ typedef typename internal::remove_all<DenseRhsType>::type Rhs;
+ typedef typename internal::remove_all<DenseResType>::type Res;
+ typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
+ static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
+ {
+ evaluator<Lhs> lhsEval(lhs);
+ for(Index j=0; j<lhs.outerSize(); ++j)
+ {
+ typename Rhs::ConstRowXpr rhs_j(rhs.row(j));
+ for(LhsInnerIterator it(lhsEval,j); it ;++it)
+ res.row(it.index()) += (alpha*it.value()) * rhs_j;
+ }
+ }
+};
+
+template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,typename AlphaType>
+inline void sparse_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
+{
+ sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, AlphaType>::run(lhs, rhs, res, alpha);
+}
+
+} // end namespace internal
+
+namespace internal {
+
+template<typename Lhs, typename Rhs, int ProductType>
+struct generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
+ : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SparseShape,DenseShape,ProductType> >
+{
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
+ {
+ typedef typename nested_eval<Lhs,((Rhs::Flags&RowMajorBit)==0) ? 1 : Rhs::ColsAtCompileTime>::type LhsNested;
+ typedef typename nested_eval<Rhs,((Lhs::Flags&RowMajorBit)==0) ? 1 : Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhs);
+ RhsNested rhsNested(rhs);
+ internal::sparse_time_dense_product(lhsNested, rhsNested, dst, alpha);
+ }
+};
+
+template<typename Lhs, typename Rhs, int ProductType>
+struct generic_product_impl<Lhs, Rhs, SparseTriangularShape, DenseShape, ProductType>
+ : generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
+{};
+
+template<typename Lhs, typename Rhs, int ProductType>
+struct generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
+ : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SparseShape,ProductType> >
+{
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dst>
+ static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
+ {
+ typedef typename nested_eval<Lhs,((Rhs::Flags&RowMajorBit)==0) ? Dynamic : 1>::type LhsNested;
+ typedef typename nested_eval<Rhs,((Lhs::Flags&RowMajorBit)==RowMajorBit) ? 1 : Lhs::RowsAtCompileTime>::type RhsNested;
+ LhsNested lhsNested(lhs);
+ RhsNested rhsNested(rhs);
+
+ // transpose everything
+ Transpose<Dst> dstT(dst);
+ internal::sparse_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
+ }
+};
+
+template<typename Lhs, typename Rhs, int ProductType>
+struct generic_product_impl<Lhs, Rhs, DenseShape, SparseTriangularShape, ProductType>
+ : generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
+{};
+
+template<typename LhsT, typename RhsT, bool NeedToTranspose>
+struct sparse_dense_outer_product_evaluator
+{
+protected:
+ typedef typename conditional<NeedToTranspose,RhsT,LhsT>::type Lhs1;
+ typedef typename conditional<NeedToTranspose,LhsT,RhsT>::type ActualRhs;
+ typedef Product<LhsT,RhsT,DefaultProduct> ProdXprType;
+
+ // if the actual left-hand side is a dense vector,
+ // then build a sparse-view so that we can seamlessly iterate over it.
+ typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value,
+ Lhs1, SparseView<Lhs1> >::type ActualLhs;
+ typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value,
+ Lhs1 const&, SparseView<Lhs1> >::type LhsArg;
+
+ typedef evaluator<ActualLhs> LhsEval;
+ typedef evaluator<ActualRhs> RhsEval;
+ typedef typename evaluator<ActualLhs>::InnerIterator LhsIterator;
+ typedef typename ProdXprType::Scalar Scalar;
+
+public:
+ enum {
+ Flags = NeedToTranspose ? RowMajorBit : 0,
+ CoeffReadCost = HugeCost
+ };
+
+ class InnerIterator : public LhsIterator
+ {
+ public:
+ InnerIterator(const sparse_dense_outer_product_evaluator &xprEval, Index outer)
+ : LhsIterator(xprEval.m_lhsXprImpl, 0),
+ m_outer(outer),
+ m_empty(false),
+ m_factor(get(xprEval.m_rhsXprImpl, outer, typename internal::traits<ActualRhs>::StorageKind() ))
+ {}
+
+ EIGEN_STRONG_INLINE Index outer() const { return m_outer; }
+ EIGEN_STRONG_INLINE Index row() const { return NeedToTranspose ? m_outer : LhsIterator::index(); }
+ EIGEN_STRONG_INLINE Index col() const { return NeedToTranspose ? LhsIterator::index() : m_outer; }
+
+ EIGEN_STRONG_INLINE Scalar value() const { return LhsIterator::value() * m_factor; }
+ EIGEN_STRONG_INLINE operator bool() const { return LhsIterator::operator bool() && (!m_empty); }
+
+ protected:
+ Scalar get(const RhsEval &rhs, Index outer, Dense = Dense()) const
+ {
+ return rhs.coeff(outer);
+ }
+
+ Scalar get(const RhsEval &rhs, Index outer, Sparse = Sparse())
+ {
+ typename RhsEval::InnerIterator it(rhs, outer);
+ if (it && it.index()==0 && it.value()!=Scalar(0))
+ return it.value();
+ m_empty = true;
+ return Scalar(0);
+ }
+
+ Index m_outer;
+ bool m_empty;
+ Scalar m_factor;
+ };
+
+ sparse_dense_outer_product_evaluator(const Lhs1 &lhs, const ActualRhs &rhs)
+ : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs)
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ // transpose case
+ sparse_dense_outer_product_evaluator(const ActualRhs &rhs, const Lhs1 &lhs)
+ : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs)
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+protected:
+ const LhsArg m_lhs;
+ evaluator<ActualLhs> m_lhsXprImpl;
+ evaluator<ActualRhs> m_rhsXprImpl;
+};
+
+// sparse * dense outer product
+template<typename Lhs, typename Rhs>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, SparseShape, DenseShape>
+ : sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor>
+{
+ typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor> Base;
+
+ typedef Product<Lhs, Rhs> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+
+ explicit product_evaluator(const XprType& xpr)
+ : Base(xpr.lhs(), xpr.rhs())
+ {}
+
+};
+
+template<typename Lhs, typename Rhs>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, DenseShape, SparseShape>
+ : sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor>
+{
+ typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor> Base;
+
+ typedef Product<Lhs, Rhs> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+
+ explicit product_evaluator(const XprType& xpr)
+ : Base(xpr.lhs(), xpr.rhs())
+ {}
+
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEDENSEPRODUCT_H
diff --git a/Eigen/src/SparseCore/SparseDiagonalProduct.h b/Eigen/src/SparseCore/SparseDiagonalProduct.h
new file mode 100644
index 0000000..941c03b
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseDiagonalProduct.h
@@ -0,0 +1,138 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_DIAGONAL_PRODUCT_H
+#define EIGEN_SPARSE_DIAGONAL_PRODUCT_H
+
+namespace Eigen {
+
+// The product of a diagonal matrix with a sparse matrix can be easily
+// implemented using expression template.
+// We have two consider very different cases:
+// 1 - diag * row-major sparse
+// => each inner vector <=> scalar * sparse vector product
+// => so we can reuse CwiseUnaryOp::InnerIterator
+// 2 - diag * col-major sparse
+// => each inner vector <=> densevector * sparse vector cwise product
+// => again, we can reuse specialization of CwiseBinaryOp::InnerIterator
+// for that particular case
+// The two other cases are symmetric.
+
+namespace internal {
+
+enum {
+ SDP_AsScalarProduct,
+ SDP_AsCwiseProduct
+};
+
+template<typename SparseXprType, typename DiagonalCoeffType, int SDP_Tag>
+struct sparse_diagonal_product_evaluator;
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, DiagonalShape, SparseShape>
+ : public sparse_diagonal_product_evaluator<Rhs, typename Lhs::DiagonalVectorType, Rhs::Flags&RowMajorBit?SDP_AsScalarProduct:SDP_AsCwiseProduct>
+{
+ typedef Product<Lhs, Rhs, DefaultProduct> XprType;
+ enum { CoeffReadCost = HugeCost, Flags = Rhs::Flags&RowMajorBit, Alignment = 0 }; // FIXME CoeffReadCost & Flags
+
+ typedef sparse_diagonal_product_evaluator<Rhs, typename Lhs::DiagonalVectorType, Rhs::Flags&RowMajorBit?SDP_AsScalarProduct:SDP_AsCwiseProduct> Base;
+ explicit product_evaluator(const XprType& xpr) : Base(xpr.rhs(), xpr.lhs().diagonal()) {}
+};
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, SparseShape, DiagonalShape>
+ : public sparse_diagonal_product_evaluator<Lhs, Transpose<const typename Rhs::DiagonalVectorType>, Lhs::Flags&RowMajorBit?SDP_AsCwiseProduct:SDP_AsScalarProduct>
+{
+ typedef Product<Lhs, Rhs, DefaultProduct> XprType;
+ enum { CoeffReadCost = HugeCost, Flags = Lhs::Flags&RowMajorBit, Alignment = 0 }; // FIXME CoeffReadCost & Flags
+
+ typedef sparse_diagonal_product_evaluator<Lhs, Transpose<const typename Rhs::DiagonalVectorType>, Lhs::Flags&RowMajorBit?SDP_AsCwiseProduct:SDP_AsScalarProduct> Base;
+ explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs().diagonal().transpose()) {}
+};
+
+template<typename SparseXprType, typename DiagonalCoeffType>
+struct sparse_diagonal_product_evaluator<SparseXprType, DiagonalCoeffType, SDP_AsScalarProduct>
+{
+protected:
+ typedef typename evaluator<SparseXprType>::InnerIterator SparseXprInnerIterator;
+ typedef typename SparseXprType::Scalar Scalar;
+
+public:
+ class InnerIterator : public SparseXprInnerIterator
+ {
+ public:
+ InnerIterator(const sparse_diagonal_product_evaluator &xprEval, Index outer)
+ : SparseXprInnerIterator(xprEval.m_sparseXprImpl, outer),
+ m_coeff(xprEval.m_diagCoeffImpl.coeff(outer))
+ {}
+
+ EIGEN_STRONG_INLINE Scalar value() const { return m_coeff * SparseXprInnerIterator::value(); }
+ protected:
+ typename DiagonalCoeffType::Scalar m_coeff;
+ };
+
+ sparse_diagonal_product_evaluator(const SparseXprType &sparseXpr, const DiagonalCoeffType &diagCoeff)
+ : m_sparseXprImpl(sparseXpr), m_diagCoeffImpl(diagCoeff)
+ {}
+
+ Index nonZerosEstimate() const { return m_sparseXprImpl.nonZerosEstimate(); }
+
+protected:
+ evaluator<SparseXprType> m_sparseXprImpl;
+ evaluator<DiagonalCoeffType> m_diagCoeffImpl;
+};
+
+
+template<typename SparseXprType, typename DiagCoeffType>
+struct sparse_diagonal_product_evaluator<SparseXprType, DiagCoeffType, SDP_AsCwiseProduct>
+{
+ typedef typename SparseXprType::Scalar Scalar;
+ typedef typename SparseXprType::StorageIndex StorageIndex;
+
+ typedef typename nested_eval<DiagCoeffType,SparseXprType::IsRowMajor ? SparseXprType::RowsAtCompileTime
+ : SparseXprType::ColsAtCompileTime>::type DiagCoeffNested;
+
+ class InnerIterator
+ {
+ typedef typename evaluator<SparseXprType>::InnerIterator SparseXprIter;
+ public:
+ InnerIterator(const sparse_diagonal_product_evaluator &xprEval, Index outer)
+ : m_sparseIter(xprEval.m_sparseXprEval, outer), m_diagCoeffNested(xprEval.m_diagCoeffNested)
+ {}
+
+ inline Scalar value() const { return m_sparseIter.value() * m_diagCoeffNested.coeff(index()); }
+ inline StorageIndex index() const { return m_sparseIter.index(); }
+ inline Index outer() const { return m_sparseIter.outer(); }
+ inline Index col() const { return SparseXprType::IsRowMajor ? m_sparseIter.index() : m_sparseIter.outer(); }
+ inline Index row() const { return SparseXprType::IsRowMajor ? m_sparseIter.outer() : m_sparseIter.index(); }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++() { ++m_sparseIter; return *this; }
+ inline operator bool() const { return m_sparseIter; }
+
+ protected:
+ SparseXprIter m_sparseIter;
+ DiagCoeffNested m_diagCoeffNested;
+ };
+
+ sparse_diagonal_product_evaluator(const SparseXprType &sparseXpr, const DiagCoeffType &diagCoeff)
+ : m_sparseXprEval(sparseXpr), m_diagCoeffNested(diagCoeff)
+ {}
+
+ Index nonZerosEstimate() const { return m_sparseXprEval.nonZerosEstimate(); }
+
+protected:
+ evaluator<SparseXprType> m_sparseXprEval;
+ DiagCoeffNested m_diagCoeffNested;
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_DIAGONAL_PRODUCT_H
diff --git a/Eigen/src/SparseCore/SparseDot.h b/Eigen/src/SparseCore/SparseDot.h
new file mode 100644
index 0000000..38bc4aa
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseDot.h
@@ -0,0 +1,98 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_DOT_H
+#define EIGEN_SPARSE_DOT_H
+
+namespace Eigen {
+
+template<typename Derived>
+template<typename OtherDerived>
+typename internal::traits<Derived>::Scalar
+SparseMatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
+{
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
+ eigen_assert(size() == other.size());
+ eigen_assert(other.size()>0 && "you are using a non initialized vector");
+
+ internal::evaluator<Derived> thisEval(derived());
+ typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
+ Scalar res(0);
+ while (i)
+ {
+ res += numext::conj(i.value()) * other.coeff(i.index());
+ ++i;
+ }
+ return res;
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+typename internal::traits<Derived>::Scalar
+SparseMatrixBase<Derived>::dot(const SparseMatrixBase<OtherDerived>& other) const
+{
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
+ EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
+ eigen_assert(size() == other.size());
+
+ internal::evaluator<Derived> thisEval(derived());
+ typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
+
+ internal::evaluator<OtherDerived> otherEval(other.derived());
+ typename internal::evaluator<OtherDerived>::InnerIterator j(otherEval, 0);
+
+ Scalar res(0);
+ while (i && j)
+ {
+ if (i.index()==j.index())
+ {
+ res += numext::conj(i.value()) * j.value();
+ ++i; ++j;
+ }
+ else if (i.index()<j.index())
+ ++i;
+ else
+ ++j;
+ }
+ return res;
+}
+
+template<typename Derived>
+inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
+SparseMatrixBase<Derived>::squaredNorm() const
+{
+ return numext::real((*this).cwiseAbs2().sum());
+}
+
+template<typename Derived>
+inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
+SparseMatrixBase<Derived>::norm() const
+{
+ using std::sqrt;
+ return sqrt(squaredNorm());
+}
+
+template<typename Derived>
+inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
+SparseMatrixBase<Derived>::blueNorm() const
+{
+ return internal::blueNorm_impl(*this);
+}
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_DOT_H
diff --git a/Eigen/src/SparseCore/SparseFuzzy.h b/Eigen/src/SparseCore/SparseFuzzy.h
new file mode 100644
index 0000000..7d47eb9
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseFuzzy.h
@@ -0,0 +1,29 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_FUZZY_H
+#define EIGEN_SPARSE_FUZZY_H
+
+namespace Eigen {
+
+template<typename Derived>
+template<typename OtherDerived>
+bool SparseMatrixBase<Derived>::isApprox(const SparseMatrixBase<OtherDerived>& other, const RealScalar &prec) const
+{
+ const typename internal::nested_eval<Derived,2,PlainObject>::type actualA(derived());
+ typename internal::conditional<bool(IsRowMajor)==bool(OtherDerived::IsRowMajor),
+ const typename internal::nested_eval<OtherDerived,2,PlainObject>::type,
+ const PlainObject>::type actualB(other.derived());
+
+ return (actualA - actualB).squaredNorm() <= prec * prec * numext::mini(actualA.squaredNorm(), actualB.squaredNorm());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_FUZZY_H
diff --git a/Eigen/src/SparseCore/SparseMap.h b/Eigen/src/SparseCore/SparseMap.h
new file mode 100644
index 0000000..f99be33
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseMap.h
@@ -0,0 +1,305 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_MAP_H
+#define EIGEN_SPARSE_MAP_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+struct traits<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+ : public traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >
+{
+ typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
+ typedef traits<PlainObjectType> TraitsBase;
+ enum {
+ Flags = TraitsBase::Flags & (~NestByRefBit)
+ };
+};
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+struct traits<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+ : public traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >
+{
+ typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
+ typedef traits<PlainObjectType> TraitsBase;
+ enum {
+ Flags = TraitsBase::Flags & (~ (NestByRefBit | LvalueBit))
+ };
+};
+
+} // end namespace internal
+
+template<typename Derived,
+ int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
+> class SparseMapBase;
+
+/** \ingroup SparseCore_Module
+ * class SparseMapBase
+ * \brief Common base class for Map and Ref instance of sparse matrix and vector.
+ */
+template<typename Derived>
+class SparseMapBase<Derived,ReadOnlyAccessors>
+ : public SparseCompressedBase<Derived>
+{
+ public:
+ typedef SparseCompressedBase<Derived> Base;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::StorageIndex StorageIndex;
+ enum { IsRowMajor = Base::IsRowMajor };
+ using Base::operator=;
+ protected:
+
+ typedef typename internal::conditional<
+ bool(internal::is_lvalue<Derived>::value),
+ Scalar *, const Scalar *>::type ScalarPointer;
+ typedef typename internal::conditional<
+ bool(internal::is_lvalue<Derived>::value),
+ StorageIndex *, const StorageIndex *>::type IndexPointer;
+
+ Index m_outerSize;
+ Index m_innerSize;
+ Array<StorageIndex,2,1> m_zero_nnz;
+ IndexPointer m_outerIndex;
+ IndexPointer m_innerIndices;
+ ScalarPointer m_values;
+ IndexPointer m_innerNonZeros;
+
+ public:
+
+ /** \copydoc SparseMatrixBase::rows() */
+ inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
+ /** \copydoc SparseMatrixBase::cols() */
+ inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
+ /** \copydoc SparseMatrixBase::innerSize() */
+ inline Index innerSize() const { return m_innerSize; }
+ /** \copydoc SparseMatrixBase::outerSize() */
+ inline Index outerSize() const { return m_outerSize; }
+ /** \copydoc SparseCompressedBase::nonZeros */
+ inline Index nonZeros() const { return m_zero_nnz[1]; }
+
+ /** \copydoc SparseCompressedBase::isCompressed */
+ bool isCompressed() const { return m_innerNonZeros==0; }
+
+ //----------------------------------------
+ // direct access interface
+ /** \copydoc SparseMatrix::valuePtr */
+ inline const Scalar* valuePtr() const { return m_values; }
+ /** \copydoc SparseMatrix::innerIndexPtr */
+ inline const StorageIndex* innerIndexPtr() const { return m_innerIndices; }
+ /** \copydoc SparseMatrix::outerIndexPtr */
+ inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; }
+ /** \copydoc SparseMatrix::innerNonZeroPtr */
+ inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; }
+ //----------------------------------------
+
+ /** \copydoc SparseMatrix::coeff */
+ inline Scalar coeff(Index row, Index col) const
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ Index start = m_outerIndex[outer];
+ Index end = isCompressed() ? m_outerIndex[outer+1] : start + m_innerNonZeros[outer];
+ if (start==end)
+ return Scalar(0);
+ else if (end>0 && inner==m_innerIndices[end-1])
+ return m_values[end-1];
+ // ^^ optimization: let's first check if it is the last coefficient
+ // (very common in high level algorithms)
+
+ const StorageIndex* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner);
+ const Index id = r-&m_innerIndices[0];
+ return ((*r==inner) && (id<end)) ? m_values[id] : Scalar(0);
+ }
+
+ inline SparseMapBase(Index rows, Index cols, Index nnz, IndexPointer outerIndexPtr, IndexPointer innerIndexPtr,
+ ScalarPointer valuePtr, IndexPointer innerNonZerosPtr = 0)
+ : m_outerSize(IsRowMajor?rows:cols), m_innerSize(IsRowMajor?cols:rows), m_zero_nnz(0,internal::convert_index<StorageIndex>(nnz)), m_outerIndex(outerIndexPtr),
+ m_innerIndices(innerIndexPtr), m_values(valuePtr), m_innerNonZeros(innerNonZerosPtr)
+ {}
+
+ // for vectors
+ inline SparseMapBase(Index size, Index nnz, IndexPointer innerIndexPtr, ScalarPointer valuePtr)
+ : m_outerSize(1), m_innerSize(size), m_zero_nnz(0,internal::convert_index<StorageIndex>(nnz)), m_outerIndex(m_zero_nnz.data()),
+ m_innerIndices(innerIndexPtr), m_values(valuePtr), m_innerNonZeros(0)
+ {}
+
+ /** Empty destructor */
+ inline ~SparseMapBase() {}
+
+ protected:
+ inline SparseMapBase() {}
+};
+
+/** \ingroup SparseCore_Module
+ * class SparseMapBase
+ * \brief Common base class for writable Map and Ref instance of sparse matrix and vector.
+ */
+template<typename Derived>
+class SparseMapBase<Derived,WriteAccessors>
+ : public SparseMapBase<Derived,ReadOnlyAccessors>
+{
+ typedef MapBase<Derived, ReadOnlyAccessors> ReadOnlyMapBase;
+
+ public:
+ typedef SparseMapBase<Derived, ReadOnlyAccessors> Base;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::StorageIndex StorageIndex;
+ enum { IsRowMajor = Base::IsRowMajor };
+
+ using Base::operator=;
+
+ public:
+
+ //----------------------------------------
+ // direct access interface
+ using Base::valuePtr;
+ using Base::innerIndexPtr;
+ using Base::outerIndexPtr;
+ using Base::innerNonZeroPtr;
+ /** \copydoc SparseMatrix::valuePtr */
+ inline Scalar* valuePtr() { return Base::m_values; }
+ /** \copydoc SparseMatrix::innerIndexPtr */
+ inline StorageIndex* innerIndexPtr() { return Base::m_innerIndices; }
+ /** \copydoc SparseMatrix::outerIndexPtr */
+ inline StorageIndex* outerIndexPtr() { return Base::m_outerIndex; }
+ /** \copydoc SparseMatrix::innerNonZeroPtr */
+ inline StorageIndex* innerNonZeroPtr() { return Base::m_innerNonZeros; }
+ //----------------------------------------
+
+ /** \copydoc SparseMatrix::coeffRef */
+ inline Scalar& coeffRef(Index row, Index col)
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ Index start = Base::m_outerIndex[outer];
+ Index end = Base::isCompressed() ? Base::m_outerIndex[outer+1] : start + Base::m_innerNonZeros[outer];
+ eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
+ eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient");
+ StorageIndex* r = std::lower_bound(&Base::m_innerIndices[start],&Base::m_innerIndices[end],inner);
+ const Index id = r - &Base::m_innerIndices[0];
+ eigen_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
+ return const_cast<Scalar*>(Base::m_values)[id];
+ }
+
+ inline SparseMapBase(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr, StorageIndex* innerIndexPtr,
+ Scalar* valuePtr, StorageIndex* innerNonZerosPtr = 0)
+ : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr)
+ {}
+
+ // for vectors
+ inline SparseMapBase(Index size, Index nnz, StorageIndex* innerIndexPtr, Scalar* valuePtr)
+ : Base(size, nnz, innerIndexPtr, valuePtr)
+ {}
+
+ /** Empty destructor */
+ inline ~SparseMapBase() {}
+
+ protected:
+ inline SparseMapBase() {}
+};
+
+/** \ingroup SparseCore_Module
+ *
+ * \brief Specialization of class Map for SparseMatrix-like storage.
+ *
+ * \tparam SparseMatrixType the equivalent sparse matrix type of the referenced data, it must be a template instance of class SparseMatrix.
+ *
+ * \sa class Map, class SparseMatrix, class Ref<SparseMatrixType,Options>
+ */
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+class Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType>
+ : public SparseMapBase<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+#else
+template<typename SparseMatrixType>
+class Map<SparseMatrixType>
+ : public SparseMapBase<Derived,WriteAccessors>
+#endif
+{
+ public:
+ typedef SparseMapBase<Map> Base;
+ EIGEN_SPARSE_PUBLIC_INTERFACE(Map)
+ enum { IsRowMajor = Base::IsRowMajor };
+
+ public:
+
+ /** Constructs a read-write Map to a sparse matrix of size \a rows x \a cols, containing \a nnz non-zero coefficients,
+ * stored as a sparse format as defined by the pointers \a outerIndexPtr, \a innerIndexPtr, and \a valuePtr.
+ * If the optional parameter \a innerNonZerosPtr is the null pointer, then a standard compressed format is assumed.
+ *
+ * This constructor is available only if \c SparseMatrixType is non-const.
+ *
+ * More details on the expected storage schemes are given in the \ref TutorialSparse "manual pages".
+ */
+ inline Map(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr,
+ StorageIndex* innerIndexPtr, Scalar* valuePtr, StorageIndex* innerNonZerosPtr = 0)
+ : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr)
+ {}
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ /** Empty destructor */
+ inline ~Map() {}
+};
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+class Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType>
+ : public SparseMapBase<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+{
+ public:
+ typedef SparseMapBase<Map> Base;
+ EIGEN_SPARSE_PUBLIC_INTERFACE(Map)
+ enum { IsRowMajor = Base::IsRowMajor };
+
+ public:
+#endif
+ /** This is the const version of the above constructor.
+ *
+ * This constructor is available only if \c SparseMatrixType is const, e.g.:
+ * \code Map<const SparseMatrix<double> > \endcode
+ */
+ inline Map(Index rows, Index cols, Index nnz, const StorageIndex* outerIndexPtr,
+ const StorageIndex* innerIndexPtr, const Scalar* valuePtr, const StorageIndex* innerNonZerosPtr = 0)
+ : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr)
+ {}
+
+ /** Empty destructor */
+ inline ~Map() {}
+};
+
+namespace internal {
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+struct evaluator<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+ : evaluator<SparseCompressedBase<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
+{
+ typedef evaluator<SparseCompressedBase<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
+ typedef Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
+ evaluator() : Base() {}
+ explicit evaluator(const XprType &mat) : Base(mat) {}
+};
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+struct evaluator<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+ : evaluator<SparseCompressedBase<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
+{
+ typedef evaluator<SparseCompressedBase<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
+ typedef Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
+ evaluator() : Base() {}
+ explicit evaluator(const XprType &mat) : Base(mat) {}
+};
+
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_MAP_H
diff --git a/Eigen/src/SparseCore/SparseMatrix.h b/Eigen/src/SparseCore/SparseMatrix.h
new file mode 100644
index 0000000..616b4a0
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseMatrix.h
@@ -0,0 +1,1518 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEMATRIX_H
+#define EIGEN_SPARSEMATRIX_H
+
+namespace Eigen {
+
+/** \ingroup SparseCore_Module
+ *
+ * \class SparseMatrix
+ *
+ * \brief A versatible sparse matrix representation
+ *
+ * This class implements a more versatile variants of the common \em compressed row/column storage format.
+ * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
+ * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
+ * space in between the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
+ * can be done with limited memory reallocation and copies.
+ *
+ * A call to the function makeCompressed() turns the matrix into the standard \em compressed format
+ * compatible with many library.
+ *
+ * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
+ *
+ * \tparam _Scalar the scalar type, i.e. the type of the coefficients
+ * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
+ * is ColMajor or RowMajor. The default is 0 which means column-major.
+ * \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
+ *
+ * \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int),
+ * whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index.
+ * Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead.
+ *
+ * This class can be extended with the help of the plugin mechanism described on the page
+ * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
+ */
+
+namespace internal {
+template<typename _Scalar, int _Options, typename _StorageIndex>
+struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> >
+{
+ typedef _Scalar Scalar;
+ typedef _StorageIndex StorageIndex;
+ typedef Sparse StorageKind;
+ typedef MatrixXpr XprKind;
+ enum {
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = Dynamic,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic,
+ Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit,
+ SupportedAccessPatterns = InnerRandomAccessPattern
+ };
+};
+
+template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
+struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
+{
+ typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType;
+ typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
+ typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
+
+ typedef _Scalar Scalar;
+ typedef Dense StorageKind;
+ typedef _StorageIndex StorageIndex;
+ typedef MatrixXpr XprKind;
+
+ enum {
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = 1,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = 1,
+ Flags = LvalueBit
+ };
+};
+
+template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
+struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
+ : public traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
+{
+ enum {
+ Flags = 0
+ };
+};
+
+} // end namespace internal
+
+template<typename _Scalar, int _Options, typename _StorageIndex>
+class SparseMatrix
+ : public SparseCompressedBase<SparseMatrix<_Scalar, _Options, _StorageIndex> >
+{
+ typedef SparseCompressedBase<SparseMatrix> Base;
+ using Base::convert_index;
+ friend class SparseVector<_Scalar,0,_StorageIndex>;
+ template<typename, typename, typename, typename, typename>
+ friend struct internal::Assignment;
+ public:
+ using Base::isCompressed;
+ using Base::nonZeros;
+ EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
+ using Base::operator+=;
+ using Base::operator-=;
+
+ typedef MappedSparseMatrix<Scalar,Flags> Map;
+ typedef Diagonal<SparseMatrix> DiagonalReturnType;
+ typedef Diagonal<const SparseMatrix> ConstDiagonalReturnType;
+ typedef typename Base::InnerIterator InnerIterator;
+ typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
+
+
+ using Base::IsRowMajor;
+ typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
+ enum {
+ Options = _Options
+ };
+
+ typedef typename Base::IndexVector IndexVector;
+ typedef typename Base::ScalarVector ScalarVector;
+ protected:
+ typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
+
+ Index m_outerSize;
+ Index m_innerSize;
+ StorageIndex* m_outerIndex;
+ StorageIndex* m_innerNonZeros; // optional, if null then the data is compressed
+ Storage m_data;
+
+ public:
+
+ /** \returns the number of rows of the matrix */
+ inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
+ /** \returns the number of columns of the matrix */
+ inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
+
+ /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
+ inline Index innerSize() const { return m_innerSize; }
+ /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
+ inline Index outerSize() const { return m_outerSize; }
+
+ /** \returns a const pointer to the array of values.
+ * This function is aimed at interoperability with other libraries.
+ * \sa innerIndexPtr(), outerIndexPtr() */
+ inline const Scalar* valuePtr() const { return m_data.valuePtr(); }
+ /** \returns a non-const pointer to the array of values.
+ * This function is aimed at interoperability with other libraries.
+ * \sa innerIndexPtr(), outerIndexPtr() */
+ inline Scalar* valuePtr() { return m_data.valuePtr(); }
+
+ /** \returns a const pointer to the array of inner indices.
+ * This function is aimed at interoperability with other libraries.
+ * \sa valuePtr(), outerIndexPtr() */
+ inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
+ /** \returns a non-const pointer to the array of inner indices.
+ * This function is aimed at interoperability with other libraries.
+ * \sa valuePtr(), outerIndexPtr() */
+ inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }
+
+ /** \returns a const pointer to the array of the starting positions of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \sa valuePtr(), innerIndexPtr() */
+ inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; }
+ /** \returns a non-const pointer to the array of the starting positions of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \sa valuePtr(), innerIndexPtr() */
+ inline StorageIndex* outerIndexPtr() { return m_outerIndex; }
+
+ /** \returns a const pointer to the array of the number of non zeros of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \warning it returns the null pointer 0 in compressed mode */
+ inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; }
+ /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \warning it returns the null pointer 0 in compressed mode */
+ inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; }
+
+ /** \internal */
+ inline Storage& data() { return m_data; }
+ /** \internal */
+ inline const Storage& data() const { return m_data; }
+
+ /** \returns the value of the matrix at position \a i, \a j
+ * This function returns Scalar(0) if the element is an explicit \em zero */
+ inline Scalar coeff(Index row, Index col) const
+ {
+ eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
+
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+ Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
+ return m_data.atInRange(m_outerIndex[outer], end, StorageIndex(inner));
+ }
+
+ /** \returns a non-const reference to the value of the matrix at position \a i, \a j
+ *
+ * If the element does not exist then it is inserted via the insert(Index,Index) function
+ * which itself turns the matrix into a non compressed form if that was not the case.
+ *
+ * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
+ * function if the element does not already exist.
+ */
+ inline Scalar& coeffRef(Index row, Index col)
+ {
+ eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
+
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ Index start = m_outerIndex[outer];
+ Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
+ eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
+ if(end<=start)
+ return insert(row,col);
+ const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner));
+ if((p<end) && (m_data.index(p)==inner))
+ return m_data.value(p);
+ else
+ return insert(row,col);
+ }
+
+ /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
+ * The non zero coefficient must \b not already exist.
+ *
+ * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
+ * mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier.
+ * In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be
+ * inserted by increasing outer-indices.
+ *
+ * If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first
+ * call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector.
+ *
+ * Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1)
+ * if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
+ *
+ */
+ Scalar& insert(Index row, Index col);
+
+ public:
+
+ /** Removes all non zeros but keep allocated memory
+ *
+ * This function does not free the currently allocated memory. To release as much as memory as possible,
+ * call \code mat.data().squeeze(); \endcode after resizing it.
+ *
+ * \sa resize(Index,Index), data()
+ */
+ inline void setZero()
+ {
+ m_data.clear();
+ memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
+ if(m_innerNonZeros)
+ memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
+ }
+
+ /** Preallocates \a reserveSize non zeros.
+ *
+ * Precondition: the matrix must be in compressed mode. */
+ inline void reserve(Index reserveSize)
+ {
+ eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
+ m_data.reserve(reserveSize);
+ }
+
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
+ /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
+ *
+ * This function turns the matrix in non-compressed mode.
+ *
+ * The type \c SizesType must expose the following interface:
+ \code
+ typedef value_type;
+ const value_type& operator[](i) const;
+ \endcode
+ * for \c i in the [0,this->outerSize()[ range.
+ * Typical choices include std::vector<int>, Eigen::VectorXi, Eigen::VectorXi::Constant, etc.
+ */
+ template<class SizesType>
+ inline void reserve(const SizesType& reserveSizes);
+ #else
+ template<class SizesType>
+ inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif =
+ #if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename
+ typename
+ #endif
+ SizesType::value_type())
+ {
+ EIGEN_UNUSED_VARIABLE(enableif);
+ reserveInnerVectors(reserveSizes);
+ }
+ #endif // EIGEN_PARSED_BY_DOXYGEN
+ protected:
+ template<class SizesType>
+ inline void reserveInnerVectors(const SizesType& reserveSizes)
+ {
+ if(isCompressed())
+ {
+ Index totalReserveSize = 0;
+ // turn the matrix into non-compressed mode
+ m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
+ if (!m_innerNonZeros) internal::throw_std_bad_alloc();
+
+ // temporarily use m_innerSizes to hold the new starting points.
+ StorageIndex* newOuterIndex = m_innerNonZeros;
+
+ StorageIndex count = 0;
+ for(Index j=0; j<m_outerSize; ++j)
+ {
+ newOuterIndex[j] = count;
+ count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
+ totalReserveSize += reserveSizes[j];
+ }
+ m_data.reserve(totalReserveSize);
+ StorageIndex previousOuterIndex = m_outerIndex[m_outerSize];
+ for(Index j=m_outerSize-1; j>=0; --j)
+ {
+ StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j];
+ for(Index i=innerNNZ-1; i>=0; --i)
+ {
+ m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
+ m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
+ }
+ previousOuterIndex = m_outerIndex[j];
+ m_outerIndex[j] = newOuterIndex[j];
+ m_innerNonZeros[j] = innerNNZ;
+ }
+ if(m_outerSize>0)
+ m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
+
+ m_data.resize(m_outerIndex[m_outerSize]);
+ }
+ else
+ {
+ StorageIndex* newOuterIndex = static_cast<StorageIndex*>(std::malloc((m_outerSize+1)*sizeof(StorageIndex)));
+ if (!newOuterIndex) internal::throw_std_bad_alloc();
+
+ StorageIndex count = 0;
+ for(Index j=0; j<m_outerSize; ++j)
+ {
+ newOuterIndex[j] = count;
+ StorageIndex alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
+ StorageIndex toReserve = std::max<StorageIndex>(reserveSizes[j], alreadyReserved);
+ count += toReserve + m_innerNonZeros[j];
+ }
+ newOuterIndex[m_outerSize] = count;
+
+ m_data.resize(count);
+ for(Index j=m_outerSize-1; j>=0; --j)
+ {
+ Index offset = newOuterIndex[j] - m_outerIndex[j];
+ if(offset>0)
+ {
+ StorageIndex innerNNZ = m_innerNonZeros[j];
+ for(Index i=innerNNZ-1; i>=0; --i)
+ {
+ m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
+ m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
+ }
+ }
+ }
+
+ std::swap(m_outerIndex, newOuterIndex);
+ std::free(newOuterIndex);
+ }
+
+ }
+ public:
+
+ //--- low level purely coherent filling ---
+
+ /** \internal
+ * \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
+ * - the nonzero does not already exist
+ * - the new coefficient is the last one according to the storage order
+ *
+ * Before filling a given inner vector you must call the statVec(Index) function.
+ *
+ * After an insertion session, you should call the finalize() function.
+ *
+ * \sa insert, insertBackByOuterInner, startVec */
+ inline Scalar& insertBack(Index row, Index col)
+ {
+ return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
+ }
+
+ /** \internal
+ * \sa insertBack, startVec */
+ inline Scalar& insertBackByOuterInner(Index outer, Index inner)
+ {
+ eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
+ eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
+ Index p = m_outerIndex[outer+1];
+ ++m_outerIndex[outer+1];
+ m_data.append(Scalar(0), inner);
+ return m_data.value(p);
+ }
+
+ /** \internal
+ * \warning use it only if you know what you are doing */
+ inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
+ {
+ Index p = m_outerIndex[outer+1];
+ ++m_outerIndex[outer+1];
+ m_data.append(Scalar(0), inner);
+ return m_data.value(p);
+ }
+
+ /** \internal
+ * \sa insertBack, insertBackByOuterInner */
+ inline void startVec(Index outer)
+ {
+ eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
+ eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
+ m_outerIndex[outer+1] = m_outerIndex[outer];
+ }
+
+ /** \internal
+ * Must be called after inserting a set of non zero entries using the low level compressed API.
+ */
+ inline void finalize()
+ {
+ if(isCompressed())
+ {
+ StorageIndex size = internal::convert_index<StorageIndex>(m_data.size());
+ Index i = m_outerSize;
+ // find the last filled column
+ while (i>=0 && m_outerIndex[i]==0)
+ --i;
+ ++i;
+ while (i<=m_outerSize)
+ {
+ m_outerIndex[i] = size;
+ ++i;
+ }
+ }
+ }
+
+ //---
+
+ template<typename InputIterators>
+ void setFromTriplets(const InputIterators& begin, const InputIterators& end);
+
+ template<typename InputIterators,typename DupFunctor>
+ void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func);
+
+ void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op<Scalar,Scalar>()); }
+
+ template<typename DupFunctor>
+ void collapseDuplicates(DupFunctor dup_func = DupFunctor());
+
+ //---
+
+ /** \internal
+ * same as insert(Index,Index) except that the indices are given relative to the storage order */
+ Scalar& insertByOuterInner(Index j, Index i)
+ {
+ return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
+ }
+
+ /** Turns the matrix into the \em compressed format.
+ */
+ void makeCompressed()
+ {
+ if(isCompressed())
+ return;
+
+ eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0);
+
+ Index oldStart = m_outerIndex[1];
+ m_outerIndex[1] = m_innerNonZeros[0];
+ for(Index j=1; j<m_outerSize; ++j)
+ {
+ Index nextOldStart = m_outerIndex[j+1];
+ Index offset = oldStart - m_outerIndex[j];
+ if(offset>0)
+ {
+ for(Index k=0; k<m_innerNonZeros[j]; ++k)
+ {
+ m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
+ m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
+ }
+ }
+ m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
+ oldStart = nextOldStart;
+ }
+ std::free(m_innerNonZeros);
+ m_innerNonZeros = 0;
+ m_data.resize(m_outerIndex[m_outerSize]);
+ m_data.squeeze();
+ }
+
+ /** Turns the matrix into the uncompressed mode */
+ void uncompress()
+ {
+ if(m_innerNonZeros != 0)
+ return;
+ m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
+ for (Index i = 0; i < m_outerSize; i++)
+ {
+ m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
+ }
+ }
+
+ /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerance \a epsilon */
+ void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
+ {
+ prune(default_prunning_func(reference,epsilon));
+ }
+
+ /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
+ * The functor type \a KeepFunc must implement the following function:
+ * \code
+ * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
+ * \endcode
+ * \sa prune(Scalar,RealScalar)
+ */
+ template<typename KeepFunc>
+ void prune(const KeepFunc& keep = KeepFunc())
+ {
+ // TODO optimize the uncompressed mode to avoid moving and allocating the data twice
+ makeCompressed();
+
+ StorageIndex k = 0;
+ for(Index j=0; j<m_outerSize; ++j)
+ {
+ Index previousStart = m_outerIndex[j];
+ m_outerIndex[j] = k;
+ Index end = m_outerIndex[j+1];
+ for(Index i=previousStart; i<end; ++i)
+ {
+ if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
+ {
+ m_data.value(k) = m_data.value(i);
+ m_data.index(k) = m_data.index(i);
+ ++k;
+ }
+ }
+ }
+ m_outerIndex[m_outerSize] = k;
+ m_data.resize(k,0);
+ }
+
+ /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
+ *
+ * If the sizes of the matrix are decreased, then the matrix is turned to \b uncompressed-mode
+ * and the storage of the out of bounds coefficients is kept and reserved.
+ * Call makeCompressed() to pack the entries and squeeze extra memory.
+ *
+ * \sa reserve(), setZero(), makeCompressed()
+ */
+ void conservativeResize(Index rows, Index cols)
+ {
+ // No change
+ if (this->rows() == rows && this->cols() == cols) return;
+
+ // If one dimension is null, then there is nothing to be preserved
+ if(rows==0 || cols==0) return resize(rows,cols);
+
+ Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
+ Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
+ StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows);
+
+ // Deals with inner non zeros
+ if (m_innerNonZeros)
+ {
+ // Resize m_innerNonZeros
+ StorageIndex *newInnerNonZeros = static_cast<StorageIndex*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex)));
+ if (!newInnerNonZeros) internal::throw_std_bad_alloc();
+ m_innerNonZeros = newInnerNonZeros;
+
+ for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)
+ m_innerNonZeros[i] = 0;
+ }
+ else if (innerChange < 0)
+ {
+ // Inner size decreased: allocate a new m_innerNonZeros
+ m_innerNonZeros = static_cast<StorageIndex*>(std::malloc((m_outerSize + outerChange) * sizeof(StorageIndex)));
+ if (!m_innerNonZeros) internal::throw_std_bad_alloc();
+ for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
+ m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
+ for(Index i = m_outerSize; i < m_outerSize + outerChange; i++)
+ m_innerNonZeros[i] = 0;
+ }
+
+ // Change the m_innerNonZeros in case of a decrease of inner size
+ if (m_innerNonZeros && innerChange < 0)
+ {
+ for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
+ {
+ StorageIndex &n = m_innerNonZeros[i];
+ StorageIndex start = m_outerIndex[i];
+ while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n;
+ }
+ }
+
+ m_innerSize = newInnerSize;
+
+ // Re-allocate outer index structure if necessary
+ if (outerChange == 0)
+ return;
+
+ StorageIndex *newOuterIndex = static_cast<StorageIndex*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex)));
+ if (!newOuterIndex) internal::throw_std_bad_alloc();
+ m_outerIndex = newOuterIndex;
+ if (outerChange > 0)
+ {
+ StorageIndex lastIdx = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
+ for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)
+ m_outerIndex[i] = lastIdx;
+ }
+ m_outerSize += outerChange;
+ }
+
+ /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
+ *
+ * This function does not free the currently allocated memory. To release as much as memory as possible,
+ * call \code mat.data().squeeze(); \endcode after resizing it.
+ *
+ * \sa reserve(), setZero()
+ */
+ void resize(Index rows, Index cols)
+ {
+ const Index outerSize = IsRowMajor ? rows : cols;
+ m_innerSize = IsRowMajor ? cols : rows;
+ m_data.clear();
+ if (m_outerSize != outerSize || m_outerSize==0)
+ {
+ std::free(m_outerIndex);
+ m_outerIndex = static_cast<StorageIndex*>(std::malloc((outerSize + 1) * sizeof(StorageIndex)));
+ if (!m_outerIndex) internal::throw_std_bad_alloc();
+
+ m_outerSize = outerSize;
+ }
+ if(m_innerNonZeros)
+ {
+ std::free(m_innerNonZeros);
+ m_innerNonZeros = 0;
+ }
+ memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
+ }
+
+ /** \internal
+ * Resize the nonzero vector to \a size */
+ void resizeNonZeros(Index size)
+ {
+ m_data.resize(size);
+ }
+
+ /** \returns a const expression of the diagonal coefficients. */
+ const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); }
+
+ /** \returns a read-write expression of the diagonal coefficients.
+ * \warning If the diagonal entries are written, then all diagonal
+ * entries \b must already exist, otherwise an assertion will be raised.
+ */
+ DiagonalReturnType diagonal() { return DiagonalReturnType(*this); }
+
+ /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
+ inline SparseMatrix()
+ : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ resize(0, 0);
+ }
+
+ /** Constructs a \a rows \c x \a cols empty matrix */
+ inline SparseMatrix(Index rows, Index cols)
+ : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ resize(rows, cols);
+ }
+
+ /** Constructs a sparse matrix from the sparse expression \a other */
+ template<typename OtherDerived>
+ inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
+ : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+ check_template_parameters();
+ const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
+ if (needToTranspose)
+ *this = other.derived();
+ else
+ {
+ #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
+ EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
+ #endif
+ internal::call_assignment_no_alias(*this, other.derived());
+ }
+ }
+
+ /** Constructs a sparse matrix from the sparse selfadjoint view \a other */
+ template<typename OtherDerived, unsigned int UpLo>
+ inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
+ : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ Base::operator=(other);
+ }
+
+ /** Copy constructor (it performs a deep copy) */
+ inline SparseMatrix(const SparseMatrix& other)
+ : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ *this = other.derived();
+ }
+
+ /** \brief Copy constructor with in-place evaluation */
+ template<typename OtherDerived>
+ SparseMatrix(const ReturnByValue<OtherDerived>& other)
+ : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ initAssignment(other);
+ other.evalTo(*this);
+ }
+
+ /** \brief Copy constructor with in-place evaluation */
+ template<typename OtherDerived>
+ explicit SparseMatrix(const DiagonalBase<OtherDerived>& other)
+ : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ *this = other.derived();
+ }
+
+ /** Swaps the content of two sparse matrices of the same type.
+ * This is a fast operation that simply swaps the underlying pointers and parameters. */
+ inline void swap(SparseMatrix& other)
+ {
+ //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
+ std::swap(m_outerIndex, other.m_outerIndex);
+ std::swap(m_innerSize, other.m_innerSize);
+ std::swap(m_outerSize, other.m_outerSize);
+ std::swap(m_innerNonZeros, other.m_innerNonZeros);
+ m_data.swap(other.m_data);
+ }
+
+ /** Sets *this to the identity matrix.
+ * This function also turns the matrix into compressed mode, and drop any reserved memory. */
+ inline void setIdentity()
+ {
+ eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
+ this->m_data.resize(rows());
+ Eigen::Map<IndexVector>(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1));
+ Eigen::Map<ScalarVector>(this->m_data.valuePtr(), rows()).setOnes();
+ Eigen::Map<IndexVector>(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows()));
+ std::free(m_innerNonZeros);
+ m_innerNonZeros = 0;
+ }
+ inline SparseMatrix& operator=(const SparseMatrix& other)
+ {
+ if (other.isRValue())
+ {
+ swap(other.const_cast_derived());
+ }
+ else if(this!=&other)
+ {
+ #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
+ EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
+ #endif
+ initAssignment(other);
+ if(other.isCompressed())
+ {
+ internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex);
+ m_data = other.m_data;
+ }
+ else
+ {
+ Base::operator=(other);
+ }
+ }
+ return *this;
+ }
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename OtherDerived>
+ inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
+ { return Base::operator=(other.derived()); }
+
+ template<typename Lhs, typename Rhs>
+ inline SparseMatrix& operator=(const Product<Lhs,Rhs,AliasFreeProduct>& other);
+#endif // EIGEN_PARSED_BY_DOXYGEN
+
+ template<typename OtherDerived>
+ EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);
+
+ friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
+ {
+ EIGEN_DBG_SPARSE(
+ s << "Nonzero entries:\n";
+ if(m.isCompressed())
+ {
+ for (Index i=0; i<m.nonZeros(); ++i)
+ s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
+ }
+ else
+ {
+ for (Index i=0; i<m.outerSize(); ++i)
+ {
+ Index p = m.m_outerIndex[i];
+ Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
+ Index k=p;
+ for (; k<pe; ++k) {
+ s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
+ }
+ for (; k<m.m_outerIndex[i+1]; ++k) {
+ s << "(_,_) ";
+ }
+ }
+ }
+ s << std::endl;
+ s << std::endl;
+ s << "Outer pointers:\n";
+ for (Index i=0; i<m.outerSize(); ++i) {
+ s << m.m_outerIndex[i] << " ";
+ }
+ s << " $" << std::endl;
+ if(!m.isCompressed())
+ {
+ s << "Inner non zeros:\n";
+ for (Index i=0; i<m.outerSize(); ++i) {
+ s << m.m_innerNonZeros[i] << " ";
+ }
+ s << " $" << std::endl;
+ }
+ s << std::endl;
+ );
+ s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
+ return s;
+ }
+
+ /** Destructor */
+ inline ~SparseMatrix()
+ {
+ std::free(m_outerIndex);
+ std::free(m_innerNonZeros);
+ }
+
+ /** Overloaded for performance */
+ Scalar sum() const;
+
+# ifdef EIGEN_SPARSEMATRIX_PLUGIN
+# include EIGEN_SPARSEMATRIX_PLUGIN
+# endif
+
+protected:
+
+ template<typename Other>
+ void initAssignment(const Other& other)
+ {
+ resize(other.rows(), other.cols());
+ if(m_innerNonZeros)
+ {
+ std::free(m_innerNonZeros);
+ m_innerNonZeros = 0;
+ }
+ }
+
+ /** \internal
+ * \sa insert(Index,Index) */
+ EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);
+
+ /** \internal
+ * A vector object that is equal to 0 everywhere but v at the position i */
+ class SingletonVector
+ {
+ StorageIndex m_index;
+ StorageIndex m_value;
+ public:
+ typedef StorageIndex value_type;
+ SingletonVector(Index i, Index v)
+ : m_index(convert_index(i)), m_value(convert_index(v))
+ {}
+
+ StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; }
+ };
+
+ /** \internal
+ * \sa insert(Index,Index) */
+ EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);
+
+public:
+ /** \internal
+ * \sa insert(Index,Index) */
+ EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(!isCompressed());
+ eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));
+
+ Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
+ m_data.index(p) = convert_index(inner);
+ return (m_data.value(p) = Scalar(0));
+ }
+protected:
+ struct IndexPosPair {
+ IndexPosPair(Index a_i, Index a_p) : i(a_i), p(a_p) {}
+ Index i;
+ Index p;
+ };
+
+ /** \internal assign \a diagXpr to the diagonal of \c *this
+ * There are different strategies:
+ * 1 - if *this is overwritten (Func==assign_op) or *this is empty, then we can work treat *this as a dense vector expression.
+ * 2 - otherwise, for each diagonal coeff,
+ * 2.a - if it already exists, then we update it,
+ * 2.b - otherwise, if *this is uncompressed and that the current inner-vector has empty room for at least 1 element, then we perform an in-place insertion.
+ * 2.c - otherwise, we'll have to reallocate and copy everything, so instead of doing so for each new element, it is recorded in a std::vector.
+ * 3 - at the end, if some entries failed to be inserted in-place, then we alloc a new buffer, copy each chunk at the right position, and insert the new elements.
+ *
+ * TODO: some piece of code could be isolated and reused for a general in-place update strategy.
+ * TODO: if we start to defer the insertion of some elements (i.e., case 2.c executed once),
+ * then it *might* be better to disable case 2.b since they will have to be copied anyway.
+ */
+ template<typename DiagXpr, typename Func>
+ void assignDiagonal(const DiagXpr diagXpr, const Func& assignFunc)
+ {
+ Index n = diagXpr.size();
+
+ const bool overwrite = internal::is_same<Func, internal::assign_op<Scalar,Scalar> >::value;
+ if(overwrite)
+ {
+ if((this->rows()!=n) || (this->cols()!=n))
+ this->resize(n, n);
+ }
+
+ if(m_data.size()==0 || overwrite)
+ {
+ typedef Array<StorageIndex,Dynamic,1> ArrayXI;
+ this->makeCompressed();
+ this->resizeNonZeros(n);
+ Eigen::Map<ArrayXI>(this->innerIndexPtr(), n).setLinSpaced(0,StorageIndex(n)-1);
+ Eigen::Map<ArrayXI>(this->outerIndexPtr(), n+1).setLinSpaced(0,StorageIndex(n));
+ Eigen::Map<Array<Scalar,Dynamic,1> > values = this->coeffs();
+ values.setZero();
+ internal::call_assignment_no_alias(values, diagXpr, assignFunc);
+ }
+ else
+ {
+ bool isComp = isCompressed();
+ internal::evaluator<DiagXpr> diaEval(diagXpr);
+ std::vector<IndexPosPair> newEntries;
+
+ // 1 - try in-place update and record insertion failures
+ for(Index i = 0; i<n; ++i)
+ {
+ internal::LowerBoundIndex lb = this->lower_bound(i,i);
+ Index p = lb.value;
+ if(lb.found)
+ {
+ // the coeff already exists
+ assignFunc.assignCoeff(m_data.value(p), diaEval.coeff(i));
+ }
+ else if((!isComp) && m_innerNonZeros[i] < (m_outerIndex[i+1]-m_outerIndex[i]))
+ {
+ // non compressed mode with local room for inserting one element
+ m_data.moveChunk(p, p+1, m_outerIndex[i]+m_innerNonZeros[i]-p);
+ m_innerNonZeros[i]++;
+ m_data.value(p) = Scalar(0);
+ m_data.index(p) = StorageIndex(i);
+ assignFunc.assignCoeff(m_data.value(p), diaEval.coeff(i));
+ }
+ else
+ {
+ // defer insertion
+ newEntries.push_back(IndexPosPair(i,p));
+ }
+ }
+ // 2 - insert deferred entries
+ Index n_entries = Index(newEntries.size());
+ if(n_entries>0)
+ {
+ Storage newData(m_data.size()+n_entries);
+ Index prev_p = 0;
+ Index prev_i = 0;
+ for(Index k=0; k<n_entries;++k)
+ {
+ Index i = newEntries[k].i;
+ Index p = newEntries[k].p;
+ internal::smart_copy(m_data.valuePtr()+prev_p, m_data.valuePtr()+p, newData.valuePtr()+prev_p+k);
+ internal::smart_copy(m_data.indexPtr()+prev_p, m_data.indexPtr()+p, newData.indexPtr()+prev_p+k);
+ for(Index j=prev_i;j<i;++j)
+ m_outerIndex[j+1] += k;
+ if(!isComp)
+ m_innerNonZeros[i]++;
+ prev_p = p;
+ prev_i = i;
+ newData.value(p+k) = Scalar(0);
+ newData.index(p+k) = StorageIndex(i);
+ assignFunc.assignCoeff(newData.value(p+k), diaEval.coeff(i));
+ }
+ {
+ internal::smart_copy(m_data.valuePtr()+prev_p, m_data.valuePtr()+m_data.size(), newData.valuePtr()+prev_p+n_entries);
+ internal::smart_copy(m_data.indexPtr()+prev_p, m_data.indexPtr()+m_data.size(), newData.indexPtr()+prev_p+n_entries);
+ for(Index j=prev_i+1;j<=m_outerSize;++j)
+ m_outerIndex[j] += n_entries;
+ }
+ m_data.swap(newData);
+ }
+ }
+ }
+
+private:
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
+ EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
+ }
+
+ struct default_prunning_func {
+ default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
+ inline bool operator() (const Index&, const Index&, const Scalar& value) const
+ {
+ return !internal::isMuchSmallerThan(value, reference, epsilon);
+ }
+ Scalar reference;
+ RealScalar epsilon;
+ };
+};
+
+namespace internal {
+
+template<typename InputIterator, typename SparseMatrixType, typename DupFunctor>
+void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func)
+{
+ enum { IsRowMajor = SparseMatrixType::IsRowMajor };
+ typedef typename SparseMatrixType::Scalar Scalar;
+ typedef typename SparseMatrixType::StorageIndex StorageIndex;
+ SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,StorageIndex> trMat(mat.rows(),mat.cols());
+
+ if(begin!=end)
+ {
+ // pass 1: count the nnz per inner-vector
+ typename SparseMatrixType::IndexVector wi(trMat.outerSize());
+ wi.setZero();
+ for(InputIterator it(begin); it!=end; ++it)
+ {
+ eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
+ wi(IsRowMajor ? it->col() : it->row())++;
+ }
+
+ // pass 2: insert all the elements into trMat
+ trMat.reserve(wi);
+ for(InputIterator it(begin); it!=end; ++it)
+ trMat.insertBackUncompressed(it->row(),it->col()) = it->value();
+
+ // pass 3:
+ trMat.collapseDuplicates(dup_func);
+ }
+
+ // pass 4: transposed copy -> implicit sorting
+ mat = trMat;
+}
+
+}
+
+
+/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
+ *
+ * A \em triplet is a tuple (i,j,value) defining a non-zero element.
+ * The input list of triplets does not have to be sorted, and can contains duplicated elements.
+ * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
+ * This is a \em O(n) operation, with \em n the number of triplet elements.
+ * The initial contents of \c *this is destroyed.
+ * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
+ * or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
+ *
+ * The \a InputIterators value_type must provide the following interface:
+ * \code
+ * Scalar value() const; // the value
+ * Scalar row() const; // the row index i
+ * Scalar col() const; // the column index j
+ * \endcode
+ * See for instance the Eigen::Triplet template class.
+ *
+ * Here is a typical usage example:
+ * \code
+ typedef Triplet<double> T;
+ std::vector<T> tripletList;
+ tripletList.reserve(estimation_of_entries);
+ for(...)
+ {
+ // ...
+ tripletList.push_back(T(i,j,v_ij));
+ }
+ SparseMatrixType m(rows,cols);
+ m.setFromTriplets(tripletList.begin(), tripletList.end());
+ // m is ready to go!
+ * \endcode
+ *
+ * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
+ * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
+ * be explicitly stored into a std::vector for instance.
+ */
+template<typename Scalar, int _Options, typename _StorageIndex>
+template<typename InputIterators>
+void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
+{
+ internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>());
+}
+
+/** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied:
+ * \code
+ * value = dup_func(OldValue, NewValue)
+ * \endcode
+ * Here is a C++11 example keeping the latest entry only:
+ * \code
+ * mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; });
+ * \endcode
+ */
+template<typename Scalar, int _Options, typename _StorageIndex>
+template<typename InputIterators,typename DupFunctor>
+void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func)
+{
+ internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex>, DupFunctor>(begin, end, *this, dup_func);
+}
+
+/** \internal */
+template<typename Scalar, int _Options, typename _StorageIndex>
+template<typename DupFunctor>
+void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor dup_func)
+{
+ eigen_assert(!isCompressed());
+ // TODO, in practice we should be able to use m_innerNonZeros for that task
+ IndexVector wi(innerSize());
+ wi.fill(-1);
+ StorageIndex count = 0;
+ // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
+ for(Index j=0; j<outerSize(); ++j)
+ {
+ StorageIndex start = count;
+ Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j];
+ for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
+ {
+ Index i = m_data.index(k);
+ if(wi(i)>=start)
+ {
+ // we already meet this entry => accumulate it
+ m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k));
+ }
+ else
+ {
+ m_data.value(count) = m_data.value(k);
+ m_data.index(count) = m_data.index(k);
+ wi(i) = count;
+ ++count;
+ }
+ }
+ m_outerIndex[j] = start;
+ }
+ m_outerIndex[m_outerSize] = count;
+
+ // turn the matrix into compressed form
+ std::free(m_innerNonZeros);
+ m_innerNonZeros = 0;
+ m_data.resize(m_outerIndex[m_outerSize]);
+}
+
+template<typename Scalar, int _Options, typename _StorageIndex>
+template<typename OtherDerived>
+EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const SparseMatrixBase<OtherDerived>& other)
+{
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
+ #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
+ EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
+ #endif
+
+ const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
+ if (needToTranspose)
+ {
+ #ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
+ EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
+ #endif
+ // two passes algorithm:
+ // 1 - compute the number of coeffs per dest inner vector
+ // 2 - do the actual copy/eval
+ // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
+ typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy;
+ typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
+ typedef internal::evaluator<_OtherCopy> OtherCopyEval;
+ OtherCopy otherCopy(other.derived());
+ OtherCopyEval otherCopyEval(otherCopy);
+
+ SparseMatrix dest(other.rows(),other.cols());
+ Eigen::Map<IndexVector> (dest.m_outerIndex,dest.outerSize()).setZero();
+
+ // pass 1
+ // FIXME the above copy could be merged with that pass
+ for (Index j=0; j<otherCopy.outerSize(); ++j)
+ for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
+ ++dest.m_outerIndex[it.index()];
+
+ // prefix sum
+ StorageIndex count = 0;
+ IndexVector positions(dest.outerSize());
+ for (Index j=0; j<dest.outerSize(); ++j)
+ {
+ StorageIndex tmp = dest.m_outerIndex[j];
+ dest.m_outerIndex[j] = count;
+ positions[j] = count;
+ count += tmp;
+ }
+ dest.m_outerIndex[dest.outerSize()] = count;
+ // alloc
+ dest.m_data.resize(count);
+ // pass 2
+ for (StorageIndex j=0; j<otherCopy.outerSize(); ++j)
+ {
+ for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
+ {
+ Index pos = positions[it.index()]++;
+ dest.m_data.index(pos) = j;
+ dest.m_data.value(pos) = it.value();
+ }
+ }
+ this->swap(dest);
+ return *this;
+ }
+ else
+ {
+ if(other.isRValue())
+ {
+ initAssignment(other.derived());
+ }
+ // there is no special optimization
+ return Base::operator=(other.derived());
+ }
+}
+
+template<typename _Scalar, int _Options, typename _StorageIndex>
+typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col)
+{
+ eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
+
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ if(isCompressed())
+ {
+ if(nonZeros()==0)
+ {
+ // reserve space if not already done
+ if(m_data.allocatedSize()==0)
+ m_data.reserve(2*m_innerSize);
+
+ // turn the matrix into non-compressed mode
+ m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
+ if(!m_innerNonZeros) internal::throw_std_bad_alloc();
+
+ memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
+
+ // pack all inner-vectors to the end of the pre-allocated space
+ // and allocate the entire free-space to the first inner-vector
+ StorageIndex end = convert_index(m_data.allocatedSize());
+ for(Index j=1; j<=m_outerSize; ++j)
+ m_outerIndex[j] = end;
+ }
+ else
+ {
+ // turn the matrix into non-compressed mode
+ m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
+ if(!m_innerNonZeros) internal::throw_std_bad_alloc();
+ for(Index j=0; j<m_outerSize; ++j)
+ m_innerNonZeros[j] = m_outerIndex[j+1]-m_outerIndex[j];
+ }
+ }
+
+ // check whether we can do a fast "push back" insertion
+ Index data_end = m_data.allocatedSize();
+
+ // First case: we are filling a new inner vector which is packed at the end.
+ // We assume that all remaining inner-vectors are also empty and packed to the end.
+ if(m_outerIndex[outer]==data_end)
+ {
+ eigen_internal_assert(m_innerNonZeros[outer]==0);
+
+ // pack previous empty inner-vectors to end of the used-space
+ // and allocate the entire free-space to the current inner-vector.
+ StorageIndex p = convert_index(m_data.size());
+ Index j = outer;
+ while(j>=0 && m_innerNonZeros[j]==0)
+ m_outerIndex[j--] = p;
+
+ // push back the new element
+ ++m_innerNonZeros[outer];
+ m_data.append(Scalar(0), inner);
+
+ // check for reallocation
+ if(data_end != m_data.allocatedSize())
+ {
+ // m_data has been reallocated
+ // -> move remaining inner-vectors back to the end of the free-space
+ // so that the entire free-space is allocated to the current inner-vector.
+ eigen_internal_assert(data_end < m_data.allocatedSize());
+ StorageIndex new_end = convert_index(m_data.allocatedSize());
+ for(Index k=outer+1; k<=m_outerSize; ++k)
+ if(m_outerIndex[k]==data_end)
+ m_outerIndex[k] = new_end;
+ }
+ return m_data.value(p);
+ }
+
+ // Second case: the next inner-vector is packed to the end
+ // and the current inner-vector end match the used-space.
+ if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size())
+ {
+ eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0);
+
+ // add space for the new element
+ ++m_innerNonZeros[outer];
+ m_data.resize(m_data.size()+1);
+
+ // check for reallocation
+ if(data_end != m_data.allocatedSize())
+ {
+ // m_data has been reallocated
+ // -> move remaining inner-vectors back to the end of the free-space
+ // so that the entire free-space is allocated to the current inner-vector.
+ eigen_internal_assert(data_end < m_data.allocatedSize());
+ StorageIndex new_end = convert_index(m_data.allocatedSize());
+ for(Index k=outer+1; k<=m_outerSize; ++k)
+ if(m_outerIndex[k]==data_end)
+ m_outerIndex[k] = new_end;
+ }
+
+ // and insert it at the right position (sorted insertion)
+ Index startId = m_outerIndex[outer];
+ Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1;
+ while ( (p > startId) && (m_data.index(p-1) > inner) )
+ {
+ m_data.index(p) = m_data.index(p-1);
+ m_data.value(p) = m_data.value(p-1);
+ --p;
+ }
+
+ m_data.index(p) = convert_index(inner);
+ return (m_data.value(p) = Scalar(0));
+ }
+
+ if(m_data.size() != m_data.allocatedSize())
+ {
+ // make sure the matrix is compatible to random un-compressed insertion:
+ m_data.resize(m_data.allocatedSize());
+ this->reserveInnerVectors(Array<StorageIndex,Dynamic,1>::Constant(m_outerSize, 2));
+ }
+
+ return insertUncompressed(row,col);
+}
+
+template<typename _Scalar, int _Options, typename _StorageIndex>
+EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col)
+{
+ eigen_assert(!isCompressed());
+
+ const Index outer = IsRowMajor ? row : col;
+ const StorageIndex inner = convert_index(IsRowMajor ? col : row);
+
+ Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
+ StorageIndex innerNNZ = m_innerNonZeros[outer];
+ if(innerNNZ>=room)
+ {
+ // this inner vector is full, we need to reallocate the whole buffer :(
+ reserve(SingletonVector(outer,std::max<StorageIndex>(2,innerNNZ)));
+ }
+
+ Index startId = m_outerIndex[outer];
+ Index p = startId + m_innerNonZeros[outer];
+ while ( (p > startId) && (m_data.index(p-1) > inner) )
+ {
+ m_data.index(p) = m_data.index(p-1);
+ m_data.value(p) = m_data.value(p-1);
+ --p;
+ }
+ eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end");
+
+ m_innerNonZeros[outer]++;
+
+ m_data.index(p) = inner;
+ return (m_data.value(p) = Scalar(0));
+}
+
+template<typename _Scalar, int _Options, typename _StorageIndex>
+EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col)
+{
+ eigen_assert(isCompressed());
+
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ Index previousOuter = outer;
+ if (m_outerIndex[outer+1]==0)
+ {
+ // we start a new inner vector
+ while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
+ {
+ m_outerIndex[previousOuter] = convert_index(m_data.size());
+ --previousOuter;
+ }
+ m_outerIndex[outer+1] = m_outerIndex[outer];
+ }
+
+ // here we have to handle the tricky case where the outerIndex array
+ // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
+ // the 2nd inner vector...
+ bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
+ && (std::size_t(m_outerIndex[outer+1]) == m_data.size());
+
+ std::size_t startId = m_outerIndex[outer];
+ // FIXME let's make sure sizeof(long int) == sizeof(std::size_t)
+ std::size_t p = m_outerIndex[outer+1];
+ ++m_outerIndex[outer+1];
+
+ double reallocRatio = 1;
+ if (m_data.allocatedSize()<=m_data.size())
+ {
+ // if there is no preallocated memory, let's reserve a minimum of 32 elements
+ if (m_data.size()==0)
+ {
+ m_data.reserve(32);
+ }
+ else
+ {
+ // we need to reallocate the data, to reduce multiple reallocations
+ // we use a smart resize algorithm based on the current filling ratio
+ // in addition, we use double to avoid integers overflows
+ double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
+ reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
+ // furthermore we bound the realloc ratio to:
+ // 1) reduce multiple minor realloc when the matrix is almost filled
+ // 2) avoid to allocate too much memory when the matrix is almost empty
+ reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
+ }
+ }
+ m_data.resize(m_data.size()+1,reallocRatio);
+
+ if (!isLastVec)
+ {
+ if (previousOuter==-1)
+ {
+ // oops wrong guess.
+ // let's correct the outer offsets
+ for (Index k=0; k<=(outer+1); ++k)
+ m_outerIndex[k] = 0;
+ Index k=outer+1;
+ while(m_outerIndex[k]==0)
+ m_outerIndex[k++] = 1;
+ while (k<=m_outerSize && m_outerIndex[k]!=0)
+ m_outerIndex[k++]++;
+ p = 0;
+ --k;
+ k = m_outerIndex[k]-1;
+ while (k>0)
+ {
+ m_data.index(k) = m_data.index(k-1);
+ m_data.value(k) = m_data.value(k-1);
+ k--;
+ }
+ }
+ else
+ {
+ // we are not inserting into the last inner vec
+ // update outer indices:
+ Index j = outer+2;
+ while (j<=m_outerSize && m_outerIndex[j]!=0)
+ m_outerIndex[j++]++;
+ --j;
+ // shift data of last vecs:
+ Index k = m_outerIndex[j]-1;
+ while (k>=Index(p))
+ {
+ m_data.index(k) = m_data.index(k-1);
+ m_data.value(k) = m_data.value(k-1);
+ k--;
+ }
+ }
+ }
+
+ while ( (p > startId) && (m_data.index(p-1) > inner) )
+ {
+ m_data.index(p) = m_data.index(p-1);
+ m_data.value(p) = m_data.value(p-1);
+ --p;
+ }
+
+ m_data.index(p) = inner;
+ return (m_data.value(p) = Scalar(0));
+}
+
+namespace internal {
+
+template<typename _Scalar, int _Options, typename _StorageIndex>
+struct evaluator<SparseMatrix<_Scalar,_Options,_StorageIndex> >
+ : evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > >
+{
+ typedef evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > Base;
+ typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
+ evaluator() : Base() {}
+ explicit evaluator(const SparseMatrixType &mat) : Base(mat) {}
+};
+
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEMATRIX_H
diff --git a/Eigen/src/SparseCore/SparseMatrixBase.h b/Eigen/src/SparseCore/SparseMatrixBase.h
new file mode 100644
index 0000000..229449f
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseMatrixBase.h
@@ -0,0 +1,398 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEMATRIXBASE_H
+#define EIGEN_SPARSEMATRIXBASE_H
+
+namespace Eigen {
+
+/** \ingroup SparseCore_Module
+ *
+ * \class SparseMatrixBase
+ *
+ * \brief Base class of any sparse matrices or sparse expressions
+ *
+ * \tparam Derived is the derived type, e.g. a sparse matrix type, or an expression, etc.
+ *
+ * This class can be extended with the help of the plugin mechanism described on the page
+ * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN.
+ */
+template<typename Derived> class SparseMatrixBase
+ : public EigenBase<Derived>
+{
+ public:
+
+ typedef typename internal::traits<Derived>::Scalar Scalar;
+
+ /** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc.
+ *
+ * It is an alias for the Scalar type */
+ typedef Scalar value_type;
+
+ typedef typename internal::packet_traits<Scalar>::type PacketScalar;
+ typedef typename internal::traits<Derived>::StorageKind StorageKind;
+
+ /** The integer type used to \b store indices within a SparseMatrix.
+ * For a \c SparseMatrix<Scalar,Options,IndexType> it an alias of the third template parameter \c IndexType. */
+ typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
+
+ typedef typename internal::add_const_on_value_type_if_arithmetic<
+ typename internal::packet_traits<Scalar>::type
+ >::type PacketReturnType;
+
+ typedef SparseMatrixBase StorageBaseType;
+
+ typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
+ typedef Matrix<Scalar,Dynamic,1> ScalarVector;
+
+ template<typename OtherDerived>
+ Derived& operator=(const EigenBase<OtherDerived> &other);
+
+ enum {
+
+ RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
+ /**< The number of rows at compile-time. This is just a copy of the value provided
+ * by the \a Derived type. If a value is not known at compile-time,
+ * it is set to the \a Dynamic constant.
+ * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
+
+ ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
+ /**< The number of columns at compile-time. This is just a copy of the value provided
+ * by the \a Derived type. If a value is not known at compile-time,
+ * it is set to the \a Dynamic constant.
+ * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
+
+
+ SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
+ internal::traits<Derived>::ColsAtCompileTime>::ret),
+ /**< This is equal to the number of coefficients, i.e. the number of
+ * rows times the number of columns, or to \a Dynamic if this is not
+ * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
+
+ MaxRowsAtCompileTime = RowsAtCompileTime,
+ MaxColsAtCompileTime = ColsAtCompileTime,
+
+ MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime,
+ MaxColsAtCompileTime>::ret),
+
+ IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1,
+ /**< This is set to true if either the number of rows or the number of
+ * columns is known at compile-time to be equal to 1. Indeed, in that case,
+ * we are dealing with a column-vector (if there is only one column) or with
+ * a row-vector (if there is only one row). */
+
+ NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2,
+ /**< This value is equal to Tensor::NumDimensions, i.e. 0 for scalars, 1 for vectors,
+ * and 2 for matrices.
+ */
+
+ Flags = internal::traits<Derived>::Flags,
+ /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
+ * constructed from this one. See the \ref flags "list of flags".
+ */
+
+ IsRowMajor = Flags&RowMajorBit ? 1 : 0,
+
+ InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
+ : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ _HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC
+ #endif
+ };
+
+ /** \internal the return type of MatrixBase::adjoint() */
+ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
+ CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >,
+ Transpose<const Derived>
+ >::type AdjointReturnType;
+ typedef Transpose<Derived> TransposeReturnType;
+ typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
+
+ // FIXME storage order do not match evaluator storage order
+ typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor : ColMajor, StorageIndex> PlainObject;
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ /** This is the "real scalar" type; if the \a Scalar type is already real numbers
+ * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
+ * \a Scalar is \a std::complex<T> then RealScalar is \a T.
+ *
+ * \sa class NumTraits
+ */
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ /** \internal the return type of coeff()
+ */
+ typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType;
+
+ /** \internal Represents a matrix with all coefficients equal to one another*/
+ typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Matrix<Scalar,Dynamic,Dynamic> > ConstantReturnType;
+
+ /** type of the equivalent dense matrix */
+ typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> DenseMatrixType;
+ /** type of the equivalent square matrix */
+ typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
+ EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
+
+ inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
+ inline Derived& derived() { return *static_cast<Derived*>(this); }
+ inline Derived& const_cast_derived() const
+ { return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); }
+
+ typedef EigenBase<Derived> Base;
+
+#endif // not EIGEN_PARSED_BY_DOXYGEN
+
+#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase
+#ifdef EIGEN_PARSED_BY_DOXYGEN
+#define EIGEN_DOC_UNARY_ADDONS(METHOD,OP) /** <p>This method does not change the sparsity of \c *this: the OP is applied to explicitly stored coefficients only. \sa SparseCompressedBase::coeffs() </p> */
+#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL /** <p> \warning This method returns a read-only expression for any sparse matrices. \sa \ref TutorialSparse_SubMatrices "Sparse block operations" </p> */
+#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND) /** <p> \warning This method returns a read-write expression for COND sparse matrices only. Otherwise, the returned expression is read-only. \sa \ref TutorialSparse_SubMatrices "Sparse block operations" </p> */
+#else
+#define EIGEN_DOC_UNARY_ADDONS(X,Y)
+#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL
+#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND)
+#endif
+# include "../plugins/CommonCwiseUnaryOps.h"
+# include "../plugins/CommonCwiseBinaryOps.h"
+# include "../plugins/MatrixCwiseUnaryOps.h"
+# include "../plugins/MatrixCwiseBinaryOps.h"
+# include "../plugins/BlockMethods.h"
+# ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN
+# include EIGEN_SPARSEMATRIXBASE_PLUGIN
+# endif
+#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
+#undef EIGEN_DOC_UNARY_ADDONS
+#undef EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL
+#undef EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF
+
+ /** \returns the number of rows. \sa cols() */
+ inline Index rows() const { return derived().rows(); }
+ /** \returns the number of columns. \sa rows() */
+ inline Index cols() const { return derived().cols(); }
+ /** \returns the number of coefficients, which is \a rows()*cols().
+ * \sa rows(), cols(). */
+ inline Index size() const { return rows() * cols(); }
+ /** \returns true if either the number of rows or the number of columns is equal to 1.
+ * In other words, this function returns
+ * \code rows()==1 || cols()==1 \endcode
+ * \sa rows(), cols(), IsVectorAtCompileTime. */
+ inline bool isVector() const { return rows()==1 || cols()==1; }
+ /** \returns the size of the storage major dimension,
+ * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
+ Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
+ /** \returns the size of the inner dimension according to the storage order,
+ * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
+ Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
+
+ bool isRValue() const { return m_isRValue; }
+ Derived& markAsRValue() { m_isRValue = true; return derived(); }
+
+ SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ }
+
+
+ template<typename OtherDerived>
+ Derived& operator=(const ReturnByValue<OtherDerived>& other);
+
+ template<typename OtherDerived>
+ inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other);
+
+ inline Derived& operator=(const Derived& other);
+
+ protected:
+
+ template<typename OtherDerived>
+ inline Derived& assign(const OtherDerived& other);
+
+ template<typename OtherDerived>
+ inline void assignGeneric(const OtherDerived& other);
+
+ public:
+
+ friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
+ {
+ typedef typename Derived::Nested Nested;
+ typedef typename internal::remove_all<Nested>::type NestedCleaned;
+
+ if (Flags&RowMajorBit)
+ {
+ Nested nm(m.derived());
+ internal::evaluator<NestedCleaned> thisEval(nm);
+ for (Index row=0; row<nm.outerSize(); ++row)
+ {
+ Index col = 0;
+ for (typename internal::evaluator<NestedCleaned>::InnerIterator it(thisEval, row); it; ++it)
+ {
+ for ( ; col<it.index(); ++col)
+ s << "0 ";
+ s << it.value() << " ";
+ ++col;
+ }
+ for ( ; col<m.cols(); ++col)
+ s << "0 ";
+ s << std::endl;
+ }
+ }
+ else
+ {
+ Nested nm(m.derived());
+ internal::evaluator<NestedCleaned> thisEval(nm);
+ if (m.cols() == 1) {
+ Index row = 0;
+ for (typename internal::evaluator<NestedCleaned>::InnerIterator it(thisEval, 0); it; ++it)
+ {
+ for ( ; row<it.index(); ++row)
+ s << "0" << std::endl;
+ s << it.value() << std::endl;
+ ++row;
+ }
+ for ( ; row<m.rows(); ++row)
+ s << "0" << std::endl;
+ }
+ else
+ {
+ SparseMatrix<Scalar, RowMajorBit, StorageIndex> trans = m;
+ s << static_cast<const SparseMatrixBase<SparseMatrix<Scalar, RowMajorBit, StorageIndex> >&>(trans);
+ }
+ }
+ return s;
+ }
+
+ template<typename OtherDerived>
+ Derived& operator+=(const SparseMatrixBase<OtherDerived>& other);
+ template<typename OtherDerived>
+ Derived& operator-=(const SparseMatrixBase<OtherDerived>& other);
+
+ template<typename OtherDerived>
+ Derived& operator+=(const DiagonalBase<OtherDerived>& other);
+ template<typename OtherDerived>
+ Derived& operator-=(const DiagonalBase<OtherDerived>& other);
+
+ template<typename OtherDerived>
+ Derived& operator+=(const EigenBase<OtherDerived> &other);
+ template<typename OtherDerived>
+ Derived& operator-=(const EigenBase<OtherDerived> &other);
+
+ Derived& operator*=(const Scalar& other);
+ Derived& operator/=(const Scalar& other);
+
+ template<typename OtherDerived> struct CwiseProductDenseReturnType {
+ typedef CwiseBinaryOp<internal::scalar_product_op<typename ScalarBinaryOpTraits<
+ typename internal::traits<Derived>::Scalar,
+ typename internal::traits<OtherDerived>::Scalar
+ >::ReturnType>,
+ const Derived,
+ const OtherDerived
+ > Type;
+ };
+
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE const typename CwiseProductDenseReturnType<OtherDerived>::Type
+ cwiseProduct(const MatrixBase<OtherDerived> &other) const;
+
+ // sparse * diagonal
+ template<typename OtherDerived>
+ const Product<Derived,OtherDerived>
+ operator*(const DiagonalBase<OtherDerived> &other) const
+ { return Product<Derived,OtherDerived>(derived(), other.derived()); }
+
+ // diagonal * sparse
+ template<typename OtherDerived> friend
+ const Product<OtherDerived,Derived>
+ operator*(const DiagonalBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
+ { return Product<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
+
+ // sparse * sparse
+ template<typename OtherDerived>
+ const Product<Derived,OtherDerived,AliasFreeProduct>
+ operator*(const SparseMatrixBase<OtherDerived> &other) const;
+
+ // sparse * dense
+ template<typename OtherDerived>
+ const Product<Derived,OtherDerived>
+ operator*(const MatrixBase<OtherDerived> &other) const
+ { return Product<Derived,OtherDerived>(derived(), other.derived()); }
+
+ // dense * sparse
+ template<typename OtherDerived> friend
+ const Product<OtherDerived,Derived>
+ operator*(const MatrixBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
+ { return Product<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
+
+ /** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */
+ SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const
+ {
+ return SparseSymmetricPermutationProduct<Derived,Upper|Lower>(derived(), perm);
+ }
+
+ template<typename OtherDerived>
+ Derived& operator*=(const SparseMatrixBase<OtherDerived>& other);
+
+ template<int Mode>
+ inline const TriangularView<const Derived, Mode> triangularView() const;
+
+ template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SparseSelfAdjointView<Derived, UpLo> Type; };
+ template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SparseSelfAdjointView<const Derived, UpLo> Type; };
+
+ template<unsigned int UpLo> inline
+ typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const;
+ template<unsigned int UpLo> inline
+ typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
+
+ template<typename OtherDerived> Scalar dot(const MatrixBase<OtherDerived>& other) const;
+ template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const;
+ RealScalar squaredNorm() const;
+ RealScalar norm() const;
+ RealScalar blueNorm() const;
+
+ TransposeReturnType transpose() { return TransposeReturnType(derived()); }
+ const ConstTransposeReturnType transpose() const { return ConstTransposeReturnType(derived()); }
+ const AdjointReturnType adjoint() const { return AdjointReturnType(transpose()); }
+
+ DenseMatrixType toDense() const
+ {
+ return DenseMatrixType(derived());
+ }
+
+ template<typename OtherDerived>
+ bool isApprox(const SparseMatrixBase<OtherDerived>& other,
+ const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
+
+ template<typename OtherDerived>
+ bool isApprox(const MatrixBase<OtherDerived>& other,
+ const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
+ { return toDense().isApprox(other,prec); }
+
+ /** \returns the matrix or vector obtained by evaluating this expression.
+ *
+ * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
+ * a const reference, in order to avoid a useless copy.
+ */
+ inline const typename internal::eval<Derived>::type eval() const
+ { return typename internal::eval<Derived>::type(derived()); }
+
+ Scalar sum() const;
+
+ inline const SparseView<Derived>
+ pruned(const Scalar& reference = Scalar(0), const RealScalar& epsilon = NumTraits<Scalar>::dummy_precision()) const;
+
+ protected:
+
+ bool m_isRValue;
+
+ static inline StorageIndex convert_index(const Index idx) {
+ return internal::convert_index<StorageIndex>(idx);
+ }
+ private:
+ template<typename Dest> void evalTo(Dest &) const;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEMATRIXBASE_H
diff --git a/Eigen/src/SparseCore/SparsePermutation.h b/Eigen/src/SparseCore/SparsePermutation.h
new file mode 100644
index 0000000..ef38357
--- /dev/null
+++ b/Eigen/src/SparseCore/SparsePermutation.h
@@ -0,0 +1,178 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_PERMUTATION_H
+#define EIGEN_SPARSE_PERMUTATION_H
+
+// This file implements sparse * permutation products
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename ExpressionType, int Side, bool Transposed>
+struct permutation_matrix_product<ExpressionType, Side, Transposed, SparseShape>
+{
+ typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
+ typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
+
+ typedef typename MatrixTypeCleaned::Scalar Scalar;
+ typedef typename MatrixTypeCleaned::StorageIndex StorageIndex;
+
+ enum {
+ SrcStorageOrder = MatrixTypeCleaned::Flags&RowMajorBit ? RowMajor : ColMajor,
+ MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight
+ };
+
+ typedef typename internal::conditional<MoveOuter,
+ SparseMatrix<Scalar,SrcStorageOrder,StorageIndex>,
+ SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,StorageIndex> >::type ReturnType;
+
+ template<typename Dest,typename PermutationType>
+ static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
+ {
+ MatrixType mat(xpr);
+ if(MoveOuter)
+ {
+ SparseMatrix<Scalar,SrcStorageOrder,StorageIndex> tmp(mat.rows(), mat.cols());
+ Matrix<StorageIndex,Dynamic,1> sizes(mat.outerSize());
+ for(Index j=0; j<mat.outerSize(); ++j)
+ {
+ Index jp = perm.indices().coeff(j);
+ sizes[((Side==OnTheLeft) ^ Transposed) ? jp : j] = StorageIndex(mat.innerVector(((Side==OnTheRight) ^ Transposed) ? jp : j).nonZeros());
+ }
+ tmp.reserve(sizes);
+ for(Index j=0; j<mat.outerSize(); ++j)
+ {
+ Index jp = perm.indices().coeff(j);
+ Index jsrc = ((Side==OnTheRight) ^ Transposed) ? jp : j;
+ Index jdst = ((Side==OnTheLeft) ^ Transposed) ? jp : j;
+ for(typename MatrixTypeCleaned::InnerIterator it(mat,jsrc); it; ++it)
+ tmp.insertByOuterInner(jdst,it.index()) = it.value();
+ }
+ dst = tmp;
+ }
+ else
+ {
+ SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,StorageIndex> tmp(mat.rows(), mat.cols());
+ Matrix<StorageIndex,Dynamic,1> sizes(tmp.outerSize());
+ sizes.setZero();
+ PermutationMatrix<Dynamic,Dynamic,StorageIndex> perm_cpy;
+ if((Side==OnTheLeft) ^ Transposed)
+ perm_cpy = perm;
+ else
+ perm_cpy = perm.transpose();
+
+ for(Index j=0; j<mat.outerSize(); ++j)
+ for(typename MatrixTypeCleaned::InnerIterator it(mat,j); it; ++it)
+ sizes[perm_cpy.indices().coeff(it.index())]++;
+ tmp.reserve(sizes);
+ for(Index j=0; j<mat.outerSize(); ++j)
+ for(typename MatrixTypeCleaned::InnerIterator it(mat,j); it; ++it)
+ tmp.insertByOuterInner(perm_cpy.indices().coeff(it.index()),j) = it.value();
+ dst = tmp;
+ }
+ }
+};
+
+}
+
+namespace internal {
+
+template <int ProductTag> struct product_promote_storage_type<Sparse, PermutationStorage, ProductTag> { typedef Sparse ret; };
+template <int ProductTag> struct product_promote_storage_type<PermutationStorage, Sparse, ProductTag> { typedef Sparse ret; };
+
+// TODO, the following two overloads are only needed to define the right temporary type through
+// typename traits<permutation_sparse_matrix_product<Rhs,Lhs,OnTheRight,false> >::ReturnType
+// whereas it should be correctly handled by traits<Product<> >::PlainObject
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, AliasFreeProduct>, ProductTag, PermutationShape, SparseShape>
+ : public evaluator<typename permutation_matrix_product<Rhs,OnTheLeft,false,SparseShape>::ReturnType>
+{
+ typedef Product<Lhs, Rhs, AliasFreeProduct> XprType;
+ typedef typename permutation_matrix_product<Rhs,OnTheLeft,false,SparseShape>::ReturnType PlainObject;
+ typedef evaluator<PlainObject> Base;
+
+ enum {
+ Flags = Base::Flags | EvalBeforeNestingBit
+ };
+
+ explicit product_evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ generic_product_impl<Lhs, Rhs, PermutationShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, AliasFreeProduct>, ProductTag, SparseShape, PermutationShape >
+ : public evaluator<typename permutation_matrix_product<Lhs,OnTheRight,false,SparseShape>::ReturnType>
+{
+ typedef Product<Lhs, Rhs, AliasFreeProduct> XprType;
+ typedef typename permutation_matrix_product<Lhs,OnTheRight,false,SparseShape>::ReturnType PlainObject;
+ typedef evaluator<PlainObject> Base;
+
+ enum {
+ Flags = Base::Flags | EvalBeforeNestingBit
+ };
+
+ explicit product_evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ generic_product_impl<Lhs, Rhs, SparseShape, PermutationShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+} // end namespace internal
+
+/** \returns the matrix with the permutation applied to the columns
+ */
+template<typename SparseDerived, typename PermDerived>
+inline const Product<SparseDerived, PermDerived, AliasFreeProduct>
+operator*(const SparseMatrixBase<SparseDerived>& matrix, const PermutationBase<PermDerived>& perm)
+{ return Product<SparseDerived, PermDerived, AliasFreeProduct>(matrix.derived(), perm.derived()); }
+
+/** \returns the matrix with the permutation applied to the rows
+ */
+template<typename SparseDerived, typename PermDerived>
+inline const Product<PermDerived, SparseDerived, AliasFreeProduct>
+operator*( const PermutationBase<PermDerived>& perm, const SparseMatrixBase<SparseDerived>& matrix)
+{ return Product<PermDerived, SparseDerived, AliasFreeProduct>(perm.derived(), matrix.derived()); }
+
+
+/** \returns the matrix with the inverse permutation applied to the columns.
+ */
+template<typename SparseDerived, typename PermutationType>
+inline const Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct>
+operator*(const SparseMatrixBase<SparseDerived>& matrix, const InverseImpl<PermutationType, PermutationStorage>& tperm)
+{
+ return Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct>(matrix.derived(), tperm.derived());
+}
+
+/** \returns the matrix with the inverse permutation applied to the rows.
+ */
+template<typename SparseDerived, typename PermutationType>
+inline const Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct>
+operator*(const InverseImpl<PermutationType,PermutationStorage>& tperm, const SparseMatrixBase<SparseDerived>& matrix)
+{
+ return Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct>(tperm.derived(), matrix.derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
diff --git a/Eigen/src/SparseCore/SparseProduct.h b/Eigen/src/SparseCore/SparseProduct.h
new file mode 100644
index 0000000..af8a774
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseProduct.h
@@ -0,0 +1,181 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEPRODUCT_H
+#define EIGEN_SPARSEPRODUCT_H
+
+namespace Eigen {
+
+/** \returns an expression of the product of two sparse matrices.
+ * By default a conservative product preserving the symbolic non zeros is performed.
+ * The automatic pruning of the small values can be achieved by calling the pruned() function
+ * in which case a totally different product algorithm is employed:
+ * \code
+ * C = (A*B).pruned(); // suppress numerical zeros (exact)
+ * C = (A*B).pruned(ref);
+ * C = (A*B).pruned(ref,epsilon);
+ * \endcode
+ * where \c ref is a meaningful non zero reference value.
+ * */
+template<typename Derived>
+template<typename OtherDerived>
+inline const Product<Derived,OtherDerived,AliasFreeProduct>
+SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
+{
+ return Product<Derived,OtherDerived,AliasFreeProduct>(derived(), other.derived());
+}
+
+namespace internal {
+
+// sparse * sparse
+template<typename Lhs, typename Rhs, int ProductType>
+struct generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ evalTo(dst, lhs, rhs, typename evaluator_traits<Dest>::Shape());
+ }
+
+ // dense += sparse * sparse
+ template<typename Dest,typename ActualLhs>
+ static void addTo(Dest& dst, const ActualLhs& lhs, const Rhs& rhs, typename enable_if<is_same<typename evaluator_traits<Dest>::Shape,DenseShape>::value,int*>::type* = 0)
+ {
+ typedef typename nested_eval<ActualLhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhs);
+ RhsNested rhsNested(rhs);
+ internal::sparse_sparse_to_dense_product_selector<typename remove_all<LhsNested>::type,
+ typename remove_all<RhsNested>::type, Dest>::run(lhsNested,rhsNested,dst);
+ }
+
+ // dense -= sparse * sparse
+ template<typename Dest>
+ static void subTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, typename enable_if<is_same<typename evaluator_traits<Dest>::Shape,DenseShape>::value,int*>::type* = 0)
+ {
+ addTo(dst, -lhs, rhs);
+ }
+
+protected:
+
+ // sparse = sparse * sparse
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, SparseShape)
+ {
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhs);
+ RhsNested rhsNested(rhs);
+ internal::conservative_sparse_sparse_product_selector<typename remove_all<LhsNested>::type,
+ typename remove_all<RhsNested>::type, Dest>::run(lhsNested,rhsNested,dst);
+ }
+
+ // dense = sparse * sparse
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, DenseShape)
+ {
+ dst.setZero();
+ addTo(dst, lhs, rhs);
+ }
+};
+
+// sparse * sparse-triangular
+template<typename Lhs, typename Rhs, int ProductType>
+struct generic_product_impl<Lhs, Rhs, SparseShape, SparseTriangularShape, ProductType>
+ : public generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
+{};
+
+// sparse-triangular * sparse
+template<typename Lhs, typename Rhs, int ProductType>
+struct generic_product_impl<Lhs, Rhs, SparseTriangularShape, SparseShape, ProductType>
+ : public generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
+{};
+
+// dense = sparse-product (can be sparse*sparse, sparse*perm, etc.)
+template< typename DstXprType, typename Lhs, typename Rhs>
+struct Assignment<DstXprType, Product<Lhs,Rhs,AliasFreeProduct>, internal::assign_op<typename DstXprType::Scalar,typename Product<Lhs,Rhs,AliasFreeProduct>::Scalar>, Sparse2Dense>
+{
+ typedef Product<Lhs,Rhs,AliasFreeProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &)
+ {
+ Index dstRows = src.rows();
+ Index dstCols = src.cols();
+ if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
+ dst.resize(dstRows, dstCols);
+
+ generic_product_impl<Lhs, Rhs>::evalTo(dst,src.lhs(),src.rhs());
+ }
+};
+
+// dense += sparse-product (can be sparse*sparse, sparse*perm, etc.)
+template< typename DstXprType, typename Lhs, typename Rhs>
+struct Assignment<DstXprType, Product<Lhs,Rhs,AliasFreeProduct>, internal::add_assign_op<typename DstXprType::Scalar,typename Product<Lhs,Rhs,AliasFreeProduct>::Scalar>, Sparse2Dense>
+{
+ typedef Product<Lhs,Rhs,AliasFreeProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &)
+ {
+ generic_product_impl<Lhs, Rhs>::addTo(dst,src.lhs(),src.rhs());
+ }
+};
+
+// dense -= sparse-product (can be sparse*sparse, sparse*perm, etc.)
+template< typename DstXprType, typename Lhs, typename Rhs>
+struct Assignment<DstXprType, Product<Lhs,Rhs,AliasFreeProduct>, internal::sub_assign_op<typename DstXprType::Scalar,typename Product<Lhs,Rhs,AliasFreeProduct>::Scalar>, Sparse2Dense>
+{
+ typedef Product<Lhs,Rhs,AliasFreeProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &)
+ {
+ generic_product_impl<Lhs, Rhs>::subTo(dst,src.lhs(),src.rhs());
+ }
+};
+
+template<typename Lhs, typename Rhs, int Options>
+struct unary_evaluator<SparseView<Product<Lhs, Rhs, Options> >, IteratorBased>
+ : public evaluator<typename Product<Lhs, Rhs, DefaultProduct>::PlainObject>
+{
+ typedef SparseView<Product<Lhs, Rhs, Options> > XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef evaluator<PlainObject> Base;
+
+ explicit unary_evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ using std::abs;
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(xpr.nestedExpression().lhs());
+ RhsNested rhsNested(xpr.nestedExpression().rhs());
+
+ internal::sparse_sparse_product_with_pruning_selector<typename remove_all<LhsNested>::type,
+ typename remove_all<RhsNested>::type, PlainObject>::run(lhsNested,rhsNested,m_result,
+ abs(xpr.reference())*xpr.epsilon());
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+} // end namespace internal
+
+// sparse matrix = sparse-product (can be sparse*sparse, sparse*perm, etc.)
+template<typename Scalar, int _Options, typename _StorageIndex>
+template<typename Lhs, typename Rhs>
+SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const Product<Lhs,Rhs,AliasFreeProduct>& src)
+{
+ // std::cout << "in Assignment : " << DstOptions << "\n";
+ SparseMatrix dst(src.rows(),src.cols());
+ internal::generic_product_impl<Lhs, Rhs>::evalTo(dst,src.lhs(),src.rhs());
+ this->swap(dst);
+ return *this;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEPRODUCT_H
diff --git a/Eigen/src/SparseCore/SparseRedux.h b/Eigen/src/SparseCore/SparseRedux.h
new file mode 100644
index 0000000..4587749
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseRedux.h
@@ -0,0 +1,49 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEREDUX_H
+#define EIGEN_SPARSEREDUX_H
+
+namespace Eigen {
+
+template<typename Derived>
+typename internal::traits<Derived>::Scalar
+SparseMatrixBase<Derived>::sum() const
+{
+ eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
+ Scalar res(0);
+ internal::evaluator<Derived> thisEval(derived());
+ for (Index j=0; j<outerSize(); ++j)
+ for (typename internal::evaluator<Derived>::InnerIterator iter(thisEval,j); iter; ++iter)
+ res += iter.value();
+ return res;
+}
+
+template<typename _Scalar, int _Options, typename _Index>
+typename internal::traits<SparseMatrix<_Scalar,_Options,_Index> >::Scalar
+SparseMatrix<_Scalar,_Options,_Index>::sum() const
+{
+ eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
+ if(this->isCompressed())
+ return Matrix<Scalar,1,Dynamic>::Map(m_data.valuePtr(), m_data.size()).sum();
+ else
+ return Base::sum();
+}
+
+template<typename _Scalar, int _Options, typename _Index>
+typename internal::traits<SparseVector<_Scalar,_Options, _Index> >::Scalar
+SparseVector<_Scalar,_Options,_Index>::sum() const
+{
+ eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
+ return Matrix<Scalar,1,Dynamic>::Map(m_data.valuePtr(), m_data.size()).sum();
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEREDUX_H
diff --git a/Eigen/src/SparseCore/SparseRef.h b/Eigen/src/SparseCore/SparseRef.h
new file mode 100644
index 0000000..748f87d
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseRef.h
@@ -0,0 +1,397 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_REF_H
+#define EIGEN_SPARSE_REF_H
+
+namespace Eigen {
+
+enum {
+ StandardCompressedFormat = 2 /**< used by Ref<SparseMatrix> to specify whether the input storage must be in standard compressed form */
+};
+
+namespace internal {
+
+template<typename Derived> class SparseRefBase;
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
+struct traits<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
+ : public traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >
+{
+ typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
+ enum {
+ Options = _Options,
+ Flags = traits<PlainObjectType>::Flags | CompressedAccessBit | NestByRefBit
+ };
+
+ template<typename Derived> struct match {
+ enum {
+ StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
+ MatchAtCompileTime = (Derived::Flags&CompressedAccessBit) && StorageOrderMatch
+ };
+ typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
+ };
+
+};
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
+struct traits<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
+ : public traits<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
+{
+ enum {
+ Flags = (traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >::Flags | CompressedAccessBit | NestByRefBit) & ~LvalueBit
+ };
+};
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
+struct traits<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
+ : public traits<SparseVector<MatScalar,MatOptions,MatIndex> >
+{
+ typedef SparseVector<MatScalar,MatOptions,MatIndex> PlainObjectType;
+ enum {
+ Options = _Options,
+ Flags = traits<PlainObjectType>::Flags | CompressedAccessBit | NestByRefBit
+ };
+
+ template<typename Derived> struct match {
+ enum {
+ MatchAtCompileTime = (Derived::Flags&CompressedAccessBit) && Derived::IsVectorAtCompileTime
+ };
+ typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
+ };
+
+};
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
+struct traits<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
+ : public traits<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
+{
+ enum {
+ Flags = (traits<SparseVector<MatScalar,MatOptions,MatIndex> >::Flags | CompressedAccessBit | NestByRefBit) & ~LvalueBit
+ };
+};
+
+template<typename Derived>
+struct traits<SparseRefBase<Derived> > : public traits<Derived> {};
+
+template<typename Derived> class SparseRefBase
+ : public SparseMapBase<Derived>
+{
+public:
+
+ typedef SparseMapBase<Derived> Base;
+ EIGEN_SPARSE_PUBLIC_INTERFACE(SparseRefBase)
+
+ SparseRefBase()
+ : Base(RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime, 0, 0, 0, 0, 0)
+ {}
+
+protected:
+
+ template<typename Expression>
+ void construct(Expression& expr)
+ {
+ if(expr.outerIndexPtr()==0)
+ ::new (static_cast<Base*>(this)) Base(expr.size(), expr.nonZeros(), expr.innerIndexPtr(), expr.valuePtr());
+ else
+ ::new (static_cast<Base*>(this)) Base(expr.rows(), expr.cols(), expr.nonZeros(), expr.outerIndexPtr(), expr.innerIndexPtr(), expr.valuePtr(), expr.innerNonZeroPtr());
+ }
+};
+
+} // namespace internal
+
+
+/**
+ * \ingroup SparseCore_Module
+ *
+ * \brief A sparse matrix expression referencing an existing sparse expression
+ *
+ * \tparam SparseMatrixType the equivalent sparse matrix type of the referenced data, it must be a template instance of class SparseMatrix.
+ * \tparam Options specifies whether the a standard compressed format is required \c Options is \c #StandardCompressedFormat, or \c 0.
+ * The default is \c 0.
+ *
+ * \sa class Ref
+ */
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+class Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType >
+ : public internal::SparseRefBase<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType > >
+#else
+template<typename SparseMatrixType, int Options>
+class Ref<SparseMatrixType, Options>
+ : public SparseMapBase<Derived,WriteAccessors> // yes, that's weird to use Derived here, but that works!
+#endif
+{
+ typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
+ typedef internal::traits<Ref> Traits;
+ template<int OtherOptions>
+ inline Ref(const SparseMatrix<MatScalar,OtherOptions,MatIndex>& expr);
+ template<int OtherOptions>
+ inline Ref(const MappedSparseMatrix<MatScalar,OtherOptions,MatIndex>& expr);
+ public:
+
+ typedef internal::SparseRefBase<Ref> Base;
+ EIGEN_SPARSE_PUBLIC_INTERFACE(Ref)
+
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<int OtherOptions>
+ inline Ref(SparseMatrix<MatScalar,OtherOptions,MatIndex>& expr)
+ {
+ EIGEN_STATIC_ASSERT(bool(Traits::template match<SparseMatrix<MatScalar,OtherOptions,MatIndex> >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
+ eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) );
+ Base::construct(expr.derived());
+ }
+
+ template<int OtherOptions>
+ inline Ref(MappedSparseMatrix<MatScalar,OtherOptions,MatIndex>& expr)
+ {
+ EIGEN_STATIC_ASSERT(bool(Traits::template match<SparseMatrix<MatScalar,OtherOptions,MatIndex> >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
+ eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) );
+ Base::construct(expr.derived());
+ }
+
+ template<typename Derived>
+ inline Ref(const SparseCompressedBase<Derived>& expr)
+ #else
+ /** Implicit constructor from any sparse expression (2D matrix or 1D vector) */
+ template<typename Derived>
+ inline Ref(SparseCompressedBase<Derived>& expr)
+ #endif
+ {
+ EIGEN_STATIC_ASSERT(bool(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
+ EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
+ eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) );
+ Base::construct(expr.const_cast_derived());
+ }
+};
+
+// this is the const ref version
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+class Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType>
+ : public internal::SparseRefBase<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+{
+ typedef SparseMatrix<MatScalar,MatOptions,MatIndex> TPlainObjectType;
+ typedef internal::traits<Ref> Traits;
+ public:
+
+ typedef internal::SparseRefBase<Ref> Base;
+ EIGEN_SPARSE_PUBLIC_INTERFACE(Ref)
+
+ template<typename Derived>
+ inline Ref(const SparseMatrixBase<Derived>& expr) : m_hasCopy(false)
+ {
+ construct(expr.derived(), typename Traits::template match<Derived>::type());
+ }
+
+ inline Ref(const Ref& other) : Base(other), m_hasCopy(false) {
+ // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy
+ }
+
+ template<typename OtherRef>
+ inline Ref(const RefBase<OtherRef>& other) : m_hasCopy(false) {
+ construct(other.derived(), typename Traits::template match<OtherRef>::type());
+ }
+
+ ~Ref() {
+ if(m_hasCopy) {
+ TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(&m_storage);
+ obj->~TPlainObjectType();
+ }
+ }
+
+ protected:
+
+ template<typename Expression>
+ void construct(const Expression& expr,internal::true_type)
+ {
+ if((Options & int(StandardCompressedFormat)) && (!expr.isCompressed()))
+ {
+ TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(&m_storage);
+ ::new (obj) TPlainObjectType(expr);
+ m_hasCopy = true;
+ Base::construct(*obj);
+ }
+ else
+ {
+ Base::construct(expr);
+ }
+ }
+
+ template<typename Expression>
+ void construct(const Expression& expr, internal::false_type)
+ {
+ TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(&m_storage);
+ ::new (obj) TPlainObjectType(expr);
+ m_hasCopy = true;
+ Base::construct(*obj);
+ }
+
+ protected:
+ typename internal::aligned_storage<sizeof(TPlainObjectType), EIGEN_ALIGNOF(TPlainObjectType)>::type m_storage;
+ bool m_hasCopy;
+};
+
+
+
+/**
+ * \ingroup SparseCore_Module
+ *
+ * \brief A sparse vector expression referencing an existing sparse vector expression
+ *
+ * \tparam SparseVectorType the equivalent sparse vector type of the referenced data, it must be a template instance of class SparseVector.
+ *
+ * \sa class Ref
+ */
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+class Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType >
+ : public internal::SparseRefBase<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType > >
+#else
+template<typename SparseVectorType>
+class Ref<SparseVectorType>
+ : public SparseMapBase<Derived,WriteAccessors>
+#endif
+{
+ typedef SparseVector<MatScalar,MatOptions,MatIndex> PlainObjectType;
+ typedef internal::traits<Ref> Traits;
+ template<int OtherOptions>
+ inline Ref(const SparseVector<MatScalar,OtherOptions,MatIndex>& expr);
+ public:
+
+ typedef internal::SparseRefBase<Ref> Base;
+ EIGEN_SPARSE_PUBLIC_INTERFACE(Ref)
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<int OtherOptions>
+ inline Ref(SparseVector<MatScalar,OtherOptions,MatIndex>& expr)
+ {
+ EIGEN_STATIC_ASSERT(bool(Traits::template match<SparseVector<MatScalar,OtherOptions,MatIndex> >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
+ Base::construct(expr.derived());
+ }
+
+ template<typename Derived>
+ inline Ref(const SparseCompressedBase<Derived>& expr)
+ #else
+ /** Implicit constructor from any 1D sparse vector expression */
+ template<typename Derived>
+ inline Ref(SparseCompressedBase<Derived>& expr)
+ #endif
+ {
+ EIGEN_STATIC_ASSERT(bool(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
+ EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
+ Base::construct(expr.const_cast_derived());
+ }
+};
+
+// this is the const ref version
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+class Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType>
+ : public internal::SparseRefBase<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+{
+ typedef SparseVector<MatScalar,MatOptions,MatIndex> TPlainObjectType;
+ typedef internal::traits<Ref> Traits;
+ public:
+
+ typedef internal::SparseRefBase<Ref> Base;
+ EIGEN_SPARSE_PUBLIC_INTERFACE(Ref)
+
+ template<typename Derived>
+ inline Ref(const SparseMatrixBase<Derived>& expr) : m_hasCopy(false)
+ {
+ construct(expr.derived(), typename Traits::template match<Derived>::type());
+ }
+
+ inline Ref(const Ref& other) : Base(other), m_hasCopy(false) {
+ // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy
+ }
+
+ template<typename OtherRef>
+ inline Ref(const RefBase<OtherRef>& other) : m_hasCopy(false) {
+ construct(other.derived(), typename Traits::template match<OtherRef>::type());
+ }
+
+ ~Ref() {
+ if(m_hasCopy) {
+ TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(&m_storage);
+ obj->~TPlainObjectType();
+ }
+ }
+
+ protected:
+
+ template<typename Expression>
+ void construct(const Expression& expr,internal::true_type)
+ {
+ Base::construct(expr);
+ }
+
+ template<typename Expression>
+ void construct(const Expression& expr, internal::false_type)
+ {
+ TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(&m_storage);
+ ::new (obj) TPlainObjectType(expr);
+ m_hasCopy = true;
+ Base::construct(*obj);
+ }
+
+ protected:
+ typename internal::aligned_storage<sizeof(TPlainObjectType), EIGEN_ALIGNOF(TPlainObjectType)>::type m_storage;
+ bool m_hasCopy;
+};
+
+namespace internal {
+
+// FIXME shall we introduce a general evaluatior_ref that we can specialize for any sparse object once, and thus remove this copy-pasta thing...
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+struct evaluator<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+ : evaluator<SparseCompressedBase<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
+{
+ typedef evaluator<SparseCompressedBase<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
+ typedef Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
+ evaluator() : Base() {}
+ explicit evaluator(const XprType &mat) : Base(mat) {}
+};
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+struct evaluator<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+ : evaluator<SparseCompressedBase<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
+{
+ typedef evaluator<SparseCompressedBase<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
+ typedef Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
+ evaluator() : Base() {}
+ explicit evaluator(const XprType &mat) : Base(mat) {}
+};
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+struct evaluator<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+ : evaluator<SparseCompressedBase<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
+{
+ typedef evaluator<SparseCompressedBase<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
+ typedef Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
+ evaluator() : Base() {}
+ explicit evaluator(const XprType &mat) : Base(mat) {}
+};
+
+template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
+struct evaluator<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
+ : evaluator<SparseCompressedBase<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
+{
+ typedef evaluator<SparseCompressedBase<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
+ typedef Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
+ evaluator() : Base() {}
+ explicit evaluator(const XprType &mat) : Base(mat) {}
+};
+
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_REF_H
diff --git a/Eigen/src/SparseCore/SparseSelfAdjointView.h b/Eigen/src/SparseCore/SparseSelfAdjointView.h
new file mode 100644
index 0000000..85b00e1
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseSelfAdjointView.h
@@ -0,0 +1,659 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
+#define EIGEN_SPARSE_SELFADJOINTVIEW_H
+
+namespace Eigen {
+
+/** \ingroup SparseCore_Module
+ * \class SparseSelfAdjointView
+ *
+ * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
+ *
+ * \param MatrixType the type of the dense matrix storing the coefficients
+ * \param Mode can be either \c #Lower or \c #Upper
+ *
+ * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
+ * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
+ * and most of the time this is the only way that it is used.
+ *
+ * \sa SparseMatrixBase::selfadjointView()
+ */
+namespace internal {
+
+template<typename MatrixType, unsigned int Mode>
+struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> {
+};
+
+template<int SrcMode,int DstMode,typename MatrixType,int DestOrder>
+void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
+
+template<int Mode,typename MatrixType,int DestOrder>
+void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
+
+}
+
+template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
+ : public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
+{
+ public:
+
+ enum {
+ Mode = _Mode,
+ TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0),
+ RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime,
+ ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime
+ };
+
+ typedef EigenBase<SparseSelfAdjointView> Base;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef Matrix<StorageIndex,Dynamic,1> VectorI;
+ typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
+ typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
+
+ explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
+ {
+ eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
+ }
+
+ inline Index rows() const { return m_matrix.rows(); }
+ inline Index cols() const { return m_matrix.cols(); }
+
+ /** \internal \returns a reference to the nested matrix */
+ const _MatrixTypeNested& matrix() const { return m_matrix; }
+ typename internal::remove_reference<MatrixTypeNested>::type& matrix() { return m_matrix; }
+
+ /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
+ *
+ * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
+ * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
+ */
+ template<typename OtherDerived>
+ Product<SparseSelfAdjointView, OtherDerived>
+ operator*(const SparseMatrixBase<OtherDerived>& rhs) const
+ {
+ return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived());
+ }
+
+ /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
+ *
+ * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
+ * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
+ */
+ template<typename OtherDerived> friend
+ Product<OtherDerived, SparseSelfAdjointView>
+ operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
+ {
+ return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs);
+ }
+
+ /** Efficient sparse self-adjoint matrix times dense vector/matrix product */
+ template<typename OtherDerived>
+ Product<SparseSelfAdjointView,OtherDerived>
+ operator*(const MatrixBase<OtherDerived>& rhs) const
+ {
+ return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived());
+ }
+
+ /** Efficient dense vector/matrix times sparse self-adjoint matrix product */
+ template<typename OtherDerived> friend
+ Product<OtherDerived,SparseSelfAdjointView>
+ operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
+ {
+ return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs);
+ }
+
+ /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
+ * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
+ *
+ * \returns a reference to \c *this
+ *
+ * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
+ * call this function with u.adjoint().
+ */
+ template<typename DerivedU>
+ SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
+
+ /** \returns an expression of P H P^-1 */
+ // TODO implement twists in a more evaluator friendly fashion
+ SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const
+ {
+ return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm);
+ }
+
+ template<typename SrcMatrixType,int SrcMode>
+ SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix)
+ {
+ internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix);
+ return *this;
+ }
+
+ SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
+ {
+ PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
+ return *this = src.twistedBy(pnull);
+ }
+
+ // Since we override the copy-assignment operator, we need to explicitly re-declare the copy-constructor
+ EIGEN_DEFAULT_COPY_CONSTRUCTOR(SparseSelfAdjointView)
+
+ template<typename SrcMatrixType,unsigned int SrcMode>
+ SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src)
+ {
+ PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
+ return *this = src.twistedBy(pnull);
+ }
+
+ void resize(Index rows, Index cols)
+ {
+ EIGEN_ONLY_USED_FOR_DEBUG(rows);
+ EIGEN_ONLY_USED_FOR_DEBUG(cols);
+ eigen_assert(rows == this->rows() && cols == this->cols()
+ && "SparseSelfadjointView::resize() does not actually allow to resize.");
+ }
+
+ protected:
+
+ MatrixTypeNested m_matrix;
+ //mutable VectorI m_countPerRow;
+ //mutable VectorI m_countPerCol;
+ private:
+ template<typename Dest> void evalTo(Dest &) const;
+};
+
+/***************************************************************************
+* Implementation of SparseMatrixBase methods
+***************************************************************************/
+
+template<typename Derived>
+template<unsigned int UpLo>
+typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() const
+{
+ return SparseSelfAdjointView<const Derived, UpLo>(derived());
+}
+
+template<typename Derived>
+template<unsigned int UpLo>
+typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView()
+{
+ return SparseSelfAdjointView<Derived, UpLo>(derived());
+}
+
+/***************************************************************************
+* Implementation of SparseSelfAdjointView methods
+***************************************************************************/
+
+template<typename MatrixType, unsigned int Mode>
+template<typename DerivedU>
+SparseSelfAdjointView<MatrixType,Mode>&
+SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
+{
+ SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint();
+ if(alpha==Scalar(0))
+ m_matrix = tmp.template triangularView<Mode>();
+ else
+ m_matrix += alpha * tmp.template triangularView<Mode>();
+
+ return *this;
+}
+
+namespace internal {
+
+// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
+// in the future selfadjoint-ness should be defined by the expression traits
+// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
+template<typename MatrixType, unsigned int Mode>
+struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> >
+{
+ typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
+ typedef SparseSelfAdjointShape Shape;
+};
+
+struct SparseSelfAdjoint2Sparse {};
+
+template<> struct AssignmentKind<SparseShape,SparseSelfAdjointShape> { typedef SparseSelfAdjoint2Sparse Kind; };
+template<> struct AssignmentKind<SparseSelfAdjointShape,SparseShape> { typedef Sparse2Sparse Kind; };
+
+template< typename DstXprType, typename SrcXprType, typename Functor>
+struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse>
+{
+ typedef typename DstXprType::StorageIndex StorageIndex;
+ typedef internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> AssignOpType;
+
+ template<typename DestScalar,int StorageOrder>
+ static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/)
+ {
+ internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst);
+ }
+
+ // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to:
+ template<typename DestScalar,int StorageOrder,typename AssignFunc>
+ static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func)
+ {
+ SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
+ run(tmp, src, AssignOpType());
+ call_assignment_no_alias_no_transpose(dst, tmp, func);
+ }
+
+ template<typename DestScalar,int StorageOrder>
+ static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
+ const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
+ {
+ SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
+ run(tmp, src, AssignOpType());
+ dst += tmp;
+ }
+
+ template<typename DestScalar,int StorageOrder>
+ static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
+ const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
+ {
+ SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
+ run(tmp, src, AssignOpType());
+ dst -= tmp;
+ }
+
+ template<typename DestScalar>
+ static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/)
+ {
+ // TODO directly evaluate into dst;
+ SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols());
+ internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp);
+ dst = tmp;
+ }
+};
+
+} // end namespace internal
+
+/***************************************************************************
+* Implementation of sparse self-adjoint time dense matrix
+***************************************************************************/
+
+namespace internal {
+
+template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
+inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
+{
+ EIGEN_ONLY_USED_FOR_DEBUG(alpha);
+
+ typedef typename internal::nested_eval<SparseLhsType,DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested;
+ typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned;
+ typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval;
+ typedef typename LhsEval::InnerIterator LhsIterator;
+ typedef typename SparseLhsType::Scalar LhsScalar;
+
+ enum {
+ LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit,
+ ProcessFirstHalf =
+ ((Mode&(Upper|Lower))==(Upper|Lower))
+ || ( (Mode&Upper) && !LhsIsRowMajor)
+ || ( (Mode&Lower) && LhsIsRowMajor),
+ ProcessSecondHalf = !ProcessFirstHalf
+ };
+
+ SparseLhsTypeNested lhs_nested(lhs);
+ LhsEval lhsEval(lhs_nested);
+
+ // work on one column at once
+ for (Index k=0; k<rhs.cols(); ++k)
+ {
+ for (Index j=0; j<lhs.outerSize(); ++j)
+ {
+ LhsIterator i(lhsEval,j);
+ // handle diagonal coeff
+ if (ProcessSecondHalf)
+ {
+ while (i && i.index()<j) ++i;
+ if(i && i.index()==j)
+ {
+ res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k);
+ ++i;
+ }
+ }
+
+ // premultiplied rhs for scatters
+ typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha*rhs(j,k));
+ // accumulator for partial scalar product
+ typename DenseResType::Scalar res_j(0);
+ for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
+ {
+ LhsScalar lhs_ij = i.value();
+ if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij);
+ res_j += lhs_ij * rhs.coeff(i.index(),k);
+ res(i.index(),k) += numext::conj(lhs_ij) * rhs_j;
+ }
+ res.coeffRef(j,k) += alpha * res_j;
+
+ // handle diagonal coeff
+ if (ProcessFirstHalf && i && (i.index()==j))
+ res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k);
+ }
+ }
+}
+
+
+template<typename LhsView, typename Rhs, int ProductType>
+struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType>
+: generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> >
+{
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha)
+ {
+ typedef typename LhsView::_MatrixTypeNested Lhs;
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhsView.matrix());
+ RhsNested rhsNested(rhs);
+
+ internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha);
+ }
+};
+
+template<typename Lhs, typename RhsView, int ProductType>
+struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType>
+: generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> >
+{
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha)
+ {
+ typedef typename RhsView::_MatrixTypeNested Rhs;
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhs);
+ RhsNested rhsNested(rhsView.matrix());
+
+ // transpose everything
+ Transpose<Dest> dstT(dst);
+ internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
+ }
+};
+
+// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix
+// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore
+
+template<typename LhsView, typename Rhs, int ProductTag>
+struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape>
+ : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject>
+{
+ typedef Product<LhsView, Rhs, DefaultProduct> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef evaluator<PlainObject> Base;
+
+ product_evaluator(const XprType& xpr)
+ : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs());
+ }
+
+protected:
+ typename Rhs::PlainObject m_lhs;
+ PlainObject m_result;
+};
+
+template<typename Lhs, typename RhsView, int ProductTag>
+struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape>
+ : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject>
+{
+ typedef Product<Lhs, RhsView, DefaultProduct> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef evaluator<PlainObject> Base;
+
+ product_evaluator(const XprType& xpr)
+ : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs);
+ }
+
+protected:
+ typename Lhs::PlainObject m_rhs;
+ PlainObject m_result;
+};
+
+} // namespace internal
+
+/***************************************************************************
+* Implementation of symmetric copies and permutations
+***************************************************************************/
+namespace internal {
+
+template<int Mode,typename MatrixType,int DestOrder>
+void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
+{
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest;
+ typedef Matrix<StorageIndex,Dynamic,1> VectorI;
+ typedef evaluator<MatrixType> MatEval;
+ typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
+
+ MatEval matEval(mat);
+ Dest& dest(_dest.derived());
+ enum {
+ StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
+ };
+
+ Index size = mat.rows();
+ VectorI count;
+ count.resize(size);
+ count.setZero();
+ dest.resize(size,size);
+ for(Index j = 0; j<size; ++j)
+ {
+ Index jp = perm ? perm[j] : j;
+ for(MatIterator it(matEval,j); it; ++it)
+ {
+ Index i = it.index();
+ Index r = it.row();
+ Index c = it.col();
+ Index ip = perm ? perm[i] : i;
+ if(Mode==int(Upper|Lower))
+ count[StorageOrderMatch ? jp : ip]++;
+ else if(r==c)
+ count[ip]++;
+ else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c))
+ {
+ count[ip]++;
+ count[jp]++;
+ }
+ }
+ }
+ Index nnz = count.sum();
+
+ // reserve space
+ dest.resizeNonZeros(nnz);
+ dest.outerIndexPtr()[0] = 0;
+ for(Index j=0; j<size; ++j)
+ dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
+ for(Index j=0; j<size; ++j)
+ count[j] = dest.outerIndexPtr()[j];
+
+ // copy data
+ for(StorageIndex j = 0; j<size; ++j)
+ {
+ for(MatIterator it(matEval,j); it; ++it)
+ {
+ StorageIndex i = internal::convert_index<StorageIndex>(it.index());
+ Index r = it.row();
+ Index c = it.col();
+
+ StorageIndex jp = perm ? perm[j] : j;
+ StorageIndex ip = perm ? perm[i] : i;
+
+ if(Mode==int(Upper|Lower))
+ {
+ Index k = count[StorageOrderMatch ? jp : ip]++;
+ dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
+ dest.valuePtr()[k] = it.value();
+ }
+ else if(r==c)
+ {
+ Index k = count[ip]++;
+ dest.innerIndexPtr()[k] = ip;
+ dest.valuePtr()[k] = it.value();
+ }
+ else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c))
+ {
+ if(!StorageOrderMatch)
+ std::swap(ip,jp);
+ Index k = count[jp]++;
+ dest.innerIndexPtr()[k] = ip;
+ dest.valuePtr()[k] = it.value();
+ k = count[ip]++;
+ dest.innerIndexPtr()[k] = jp;
+ dest.valuePtr()[k] = numext::conj(it.value());
+ }
+ }
+ }
+}
+
+template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
+void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
+{
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef typename MatrixType::Scalar Scalar;
+ SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived());
+ typedef Matrix<StorageIndex,Dynamic,1> VectorI;
+ typedef evaluator<MatrixType> MatEval;
+ typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
+
+ enum {
+ SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
+ StorageOrderMatch = int(SrcOrder) == int(DstOrder),
+ DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
+ SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
+ };
+
+ MatEval matEval(mat);
+
+ Index size = mat.rows();
+ VectorI count(size);
+ count.setZero();
+ dest.resize(size,size);
+ for(StorageIndex j = 0; j<size; ++j)
+ {
+ StorageIndex jp = perm ? perm[j] : j;
+ for(MatIterator it(matEval,j); it; ++it)
+ {
+ StorageIndex i = it.index();
+ if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
+ continue;
+
+ StorageIndex ip = perm ? perm[i] : i;
+ count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
+ }
+ }
+ dest.outerIndexPtr()[0] = 0;
+ for(Index j=0; j<size; ++j)
+ dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
+ dest.resizeNonZeros(dest.outerIndexPtr()[size]);
+ for(Index j=0; j<size; ++j)
+ count[j] = dest.outerIndexPtr()[j];
+
+ for(StorageIndex j = 0; j<size; ++j)
+ {
+
+ for(MatIterator it(matEval,j); it; ++it)
+ {
+ StorageIndex i = it.index();
+ if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
+ continue;
+
+ StorageIndex jp = perm ? perm[j] : j;
+ StorageIndex ip = perm? perm[i] : i;
+
+ Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
+ dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
+
+ if(!StorageOrderMatch) std::swap(ip,jp);
+ if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp)))
+ dest.valuePtr()[k] = numext::conj(it.value());
+ else
+ dest.valuePtr()[k] = it.value();
+ }
+ }
+}
+
+}
+
+// TODO implement twists in a more evaluator friendly fashion
+
+namespace internal {
+
+template<typename MatrixType, int Mode>
+struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> {
+};
+
+}
+
+template<typename MatrixType,int Mode>
+class SparseSymmetricPermutationProduct
+ : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> >
+{
+ public:
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ enum {
+ RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime,
+ ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime
+ };
+ protected:
+ typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm;
+ public:
+ typedef Matrix<StorageIndex,Dynamic,1> VectorI;
+ typedef typename MatrixType::Nested MatrixTypeNested;
+ typedef typename internal::remove_all<MatrixTypeNested>::type NestedExpression;
+
+ SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
+ : m_matrix(mat), m_perm(perm)
+ {}
+
+ inline Index rows() const { return m_matrix.rows(); }
+ inline Index cols() const { return m_matrix.cols(); }
+
+ const NestedExpression& matrix() const { return m_matrix; }
+ const Perm& perm() const { return m_perm; }
+
+ protected:
+ MatrixTypeNested m_matrix;
+ const Perm& m_perm;
+
+};
+
+namespace internal {
+
+template<typename DstXprType, typename MatrixType, int Mode, typename Scalar>
+struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse>
+{
+ typedef SparseSymmetricPermutationProduct<MatrixType,Mode> SrcXprType;
+ typedef typename DstXprType::StorageIndex DstIndex;
+ template<int Options>
+ static void run(SparseMatrix<Scalar,Options,DstIndex> &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
+ {
+ // internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data());
+ SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
+ internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data());
+ dst = tmp;
+ }
+
+ template<typename DestType,unsigned int DestMode>
+ static void run(SparseSelfAdjointView<DestType,DestMode>& dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
+ {
+ internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data());
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
diff --git a/Eigen/src/SparseCore/SparseSolverBase.h b/Eigen/src/SparseCore/SparseSolverBase.h
new file mode 100644
index 0000000..b4c9a42
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseSolverBase.h
@@ -0,0 +1,124 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSESOLVERBASE_H
+#define EIGEN_SPARSESOLVERBASE_H
+
+namespace Eigen {
+
+namespace internal {
+
+ /** \internal
+ * Helper functions to solve with a sparse right-hand-side and result.
+ * The rhs is decomposed into small vertical panels which are solved through dense temporaries.
+ */
+template<typename Decomposition, typename Rhs, typename Dest>
+typename enable_if<Rhs::ColsAtCompileTime!=1 && Dest::ColsAtCompileTime!=1>::type
+solve_sparse_through_dense_panels(const Decomposition &dec, const Rhs& rhs, Dest &dest)
+{
+ EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
+ typedef typename Dest::Scalar DestScalar;
+ // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
+ static const Index NbColsAtOnce = 4;
+ Index rhsCols = rhs.cols();
+ Index size = rhs.rows();
+ // the temporary matrices do not need more columns than NbColsAtOnce:
+ Index tmpCols = (std::min)(rhsCols, NbColsAtOnce);
+ Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,tmpCols);
+ Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmpX(size,tmpCols);
+ for(Index k=0; k<rhsCols; k+=NbColsAtOnce)
+ {
+ Index actualCols = std::min<Index>(rhsCols-k, NbColsAtOnce);
+ tmp.leftCols(actualCols) = rhs.middleCols(k,actualCols);
+ tmpX.leftCols(actualCols) = dec.solve(tmp.leftCols(actualCols));
+ dest.middleCols(k,actualCols) = tmpX.leftCols(actualCols).sparseView();
+ }
+}
+
+// Overload for vector as rhs
+template<typename Decomposition, typename Rhs, typename Dest>
+typename enable_if<Rhs::ColsAtCompileTime==1 || Dest::ColsAtCompileTime==1>::type
+solve_sparse_through_dense_panels(const Decomposition &dec, const Rhs& rhs, Dest &dest)
+{
+ typedef typename Dest::Scalar DestScalar;
+ Index size = rhs.rows();
+ Eigen::Matrix<DestScalar,Dynamic,1> rhs_dense(rhs);
+ Eigen::Matrix<DestScalar,Dynamic,1> dest_dense(size);
+ dest_dense = dec.solve(rhs_dense);
+ dest = dest_dense.sparseView();
+}
+
+} // end namespace internal
+
+/** \class SparseSolverBase
+ * \ingroup SparseCore_Module
+ * \brief A base class for sparse solvers
+ *
+ * \tparam Derived the actual type of the solver.
+ *
+ */
+template<typename Derived>
+class SparseSolverBase : internal::noncopyable
+{
+ public:
+
+ /** Default constructor */
+ SparseSolverBase()
+ : m_isInitialized(false)
+ {}
+
+ ~SparseSolverBase()
+ {}
+
+ Derived& derived() { return *static_cast<Derived*>(this); }
+ const Derived& derived() const { return *static_cast<const Derived*>(this); }
+
+ /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs>
+ inline const Solve<Derived, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "Solver is not initialized.");
+ eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
+ return Solve<Derived, Rhs>(derived(), b.derived());
+ }
+
+ /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs>
+ inline const Solve<Derived, Rhs>
+ solve(const SparseMatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "Solver is not initialized.");
+ eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
+ return Solve<Derived, Rhs>(derived(), b.derived());
+ }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ /** \internal default implementation of solving with a sparse rhs */
+ template<typename Rhs,typename Dest>
+ void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const
+ {
+ internal::solve_sparse_through_dense_panels(derived(), b.derived(), dest.derived());
+ }
+ #endif // EIGEN_PARSED_BY_DOXYGEN
+
+ protected:
+
+ mutable bool m_isInitialized;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSESOLVERBASE_H
diff --git a/Eigen/src/SparseCore/SparseSparseProductWithPruning.h b/Eigen/src/SparseCore/SparseSparseProductWithPruning.h
new file mode 100644
index 0000000..88820a4
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseSparseProductWithPruning.h
@@ -0,0 +1,198 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
+#define EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
+
+namespace Eigen {
+
+namespace internal {
+
+
+// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
+template<typename Lhs, typename Rhs, typename ResultType>
+static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, const typename ResultType::RealScalar& tolerance)
+{
+ // return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res);
+
+ typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
+ typedef typename remove_all<ResultType>::type::Scalar ResScalar;
+ typedef typename remove_all<Lhs>::type::StorageIndex StorageIndex;
+
+ // make sure to call innerSize/outerSize since we fake the storage order.
+ Index rows = lhs.innerSize();
+ Index cols = rhs.outerSize();
+ //Index size = lhs.outerSize();
+ eigen_assert(lhs.outerSize() == rhs.innerSize());
+
+ // allocate a temporary buffer
+ AmbiVector<ResScalar,StorageIndex> tempVector(rows);
+
+ // mimics a resizeByInnerOuter:
+ if(ResultType::IsRowMajor)
+ res.resize(cols, rows);
+ else
+ res.resize(rows, cols);
+
+ evaluator<Lhs> lhsEval(lhs);
+ evaluator<Rhs> rhsEval(rhs);
+
+ // estimate the number of non zero entries
+ // given a rhs column containing Y non zeros, we assume that the respective Y columns
+ // of the lhs differs in average of one non zeros, thus the number of non zeros for
+ // the product of a rhs column with the lhs is X+Y where X is the average number of non zero
+ // per column of the lhs.
+ // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
+ Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate();
+
+ res.reserve(estimated_nnz_prod);
+ double ratioColRes = double(estimated_nnz_prod)/(double(lhs.rows())*double(rhs.cols()));
+ for (Index j=0; j<cols; ++j)
+ {
+ // FIXME:
+ //double ratioColRes = (double(rhs.innerVector(j).nonZeros()) + double(lhs.nonZeros())/double(lhs.cols()))/double(lhs.rows());
+ // let's do a more accurate determination of the nnz ratio for the current column j of res
+ tempVector.init(ratioColRes);
+ tempVector.setZero();
+ for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
+ {
+ // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
+ tempVector.restart();
+ RhsScalar x = rhsIt.value();
+ for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, rhsIt.index()); lhsIt; ++lhsIt)
+ {
+ tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
+ }
+ }
+ res.startVec(j);
+ for (typename AmbiVector<ResScalar,StorageIndex>::Iterator it(tempVector,tolerance); it; ++it)
+ res.insertBackByOuterInner(j,it.index()) = it.value();
+ }
+ res.finalize();
+}
+
+template<typename Lhs, typename Rhs, typename ResultType,
+ int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit,
+ int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit,
+ int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit>
+struct sparse_sparse_product_with_pruning_selector;
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ typename remove_all<ResultType>::type _res(res.rows(), res.cols());
+ internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res, tolerance);
+ res.swap(_res);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ // we need a col-major matrix to hold the result
+ typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> SparseTemporaryType;
+ SparseTemporaryType _res(res.rows(), res.cols());
+ internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res, tolerance);
+ res = _res;
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ // let's transpose the product to get a column x column product
+ typename remove_all<ResultType>::type _res(res.rows(), res.cols());
+ internal::sparse_sparse_product_with_pruning_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res, tolerance);
+ res.swap(_res);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
+ typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
+ ColMajorMatrixLhs colLhs(lhs);
+ ColMajorMatrixRhs colRhs(rhs);
+ internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,ColMajorMatrixRhs,ResultType>(colLhs, colRhs, res, tolerance);
+
+ // let's transpose the product to get a column x column product
+// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
+// SparseTemporaryType _res(res.cols(), res.rows());
+// sparse_sparse_product_with_pruning_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
+// res = _res.transpose();
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ typedef SparseMatrix<typename Lhs::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixLhs;
+ RowMajorMatrixLhs rowLhs(lhs);
+ sparse_sparse_product_with_pruning_selector<RowMajorMatrixLhs,Rhs,ResultType,RowMajor,RowMajor>(rowLhs,rhs,res,tolerance);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ typedef SparseMatrix<typename Rhs::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixRhs;
+ RowMajorMatrixRhs rowRhs(rhs);
+ sparse_sparse_product_with_pruning_selector<Lhs,RowMajorMatrixRhs,ResultType,RowMajor,RowMajor,RowMajor>(lhs,rowRhs,res,tolerance);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
+ ColMajorMatrixRhs colRhs(rhs);
+ internal::sparse_sparse_product_with_pruning_impl<Lhs,ColMajorMatrixRhs,ResultType>(lhs, colRhs, res, tolerance);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
+ ColMajorMatrixLhs colLhs(lhs);
+ internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,Rhs,ResultType>(colLhs, rhs, res, tolerance);
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
diff --git a/Eigen/src/SparseCore/SparseTranspose.h b/Eigen/src/SparseCore/SparseTranspose.h
new file mode 100644
index 0000000..3757d4c
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseTranspose.h
@@ -0,0 +1,92 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSETRANSPOSE_H
+#define EIGEN_SPARSETRANSPOSE_H
+
+namespace Eigen {
+
+namespace internal {
+ template<typename MatrixType,int CompressedAccess=int(MatrixType::Flags&CompressedAccessBit)>
+ class SparseTransposeImpl
+ : public SparseMatrixBase<Transpose<MatrixType> >
+ {};
+
+ template<typename MatrixType>
+ class SparseTransposeImpl<MatrixType,CompressedAccessBit>
+ : public SparseCompressedBase<Transpose<MatrixType> >
+ {
+ typedef SparseCompressedBase<Transpose<MatrixType> > Base;
+ public:
+ using Base::derived;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::StorageIndex StorageIndex;
+
+ inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); }
+
+ inline const Scalar* valuePtr() const { return derived().nestedExpression().valuePtr(); }
+ inline const StorageIndex* innerIndexPtr() const { return derived().nestedExpression().innerIndexPtr(); }
+ inline const StorageIndex* outerIndexPtr() const { return derived().nestedExpression().outerIndexPtr(); }
+ inline const StorageIndex* innerNonZeroPtr() const { return derived().nestedExpression().innerNonZeroPtr(); }
+
+ inline Scalar* valuePtr() { return derived().nestedExpression().valuePtr(); }
+ inline StorageIndex* innerIndexPtr() { return derived().nestedExpression().innerIndexPtr(); }
+ inline StorageIndex* outerIndexPtr() { return derived().nestedExpression().outerIndexPtr(); }
+ inline StorageIndex* innerNonZeroPtr() { return derived().nestedExpression().innerNonZeroPtr(); }
+ };
+}
+
+template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
+ : public internal::SparseTransposeImpl<MatrixType>
+{
+ protected:
+ typedef internal::SparseTransposeImpl<MatrixType> Base;
+};
+
+namespace internal {
+
+template<typename ArgType>
+struct unary_evaluator<Transpose<ArgType>, IteratorBased>
+ : public evaluator_base<Transpose<ArgType> >
+{
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+ public:
+ typedef Transpose<ArgType> XprType;
+
+ inline Index nonZerosEstimate() const {
+ return m_argImpl.nonZerosEstimate();
+ }
+
+ class InnerIterator : public EvalIterator
+ {
+ public:
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer)
+ : EvalIterator(unaryOp.m_argImpl,outer)
+ {}
+
+ Index row() const { return EvalIterator::col(); }
+ Index col() const { return EvalIterator::row(); }
+ };
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = XprType::Flags
+ };
+
+ explicit unary_evaluator(const XprType& op) :m_argImpl(op.nestedExpression()) {}
+
+ protected:
+ evaluator<ArgType> m_argImpl;
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSETRANSPOSE_H
diff --git a/Eigen/src/SparseCore/SparseTriangularView.h b/Eigen/src/SparseCore/SparseTriangularView.h
new file mode 100644
index 0000000..9ac1202
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseTriangularView.h
@@ -0,0 +1,189 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_TRIANGULARVIEW_H
+#define EIGEN_SPARSE_TRIANGULARVIEW_H
+
+namespace Eigen {
+
+/** \ingroup SparseCore_Module
+ *
+ * \brief Base class for a triangular part in a \b sparse matrix
+ *
+ * This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be instantiated.
+ * It extends class TriangularView with additional methods which are available for sparse expressions only.
+ *
+ * \sa class TriangularView, SparseMatrixBase::triangularView()
+ */
+template<typename MatrixType, unsigned int Mode> class TriangularViewImpl<MatrixType,Mode,Sparse>
+ : public SparseMatrixBase<TriangularView<MatrixType,Mode> >
+{
+ enum { SkipFirst = ((Mode&Lower) && !(MatrixType::Flags&RowMajorBit))
+ || ((Mode&Upper) && (MatrixType::Flags&RowMajorBit)),
+ SkipLast = !SkipFirst,
+ SkipDiag = (Mode&ZeroDiag) ? 1 : 0,
+ HasUnitDiag = (Mode&UnitDiag) ? 1 : 0
+ };
+
+ typedef TriangularView<MatrixType,Mode> TriangularViewType;
+
+ protected:
+ // dummy solve function to make TriangularView happy.
+ void solve() const;
+
+ typedef SparseMatrixBase<TriangularViewType> Base;
+ public:
+
+ EIGEN_SPARSE_PUBLIC_INTERFACE(TriangularViewType)
+
+ typedef typename MatrixType::Nested MatrixTypeNested;
+ typedef typename internal::remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
+ typedef typename internal::remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
+
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const {
+ if(!(internal::is_same<RhsType,DstType>::value && internal::extract_data(dst) == internal::extract_data(rhs)))
+ dst = rhs;
+ this->solveInPlace(dst);
+ }
+
+ /** Applies the inverse of \c *this to the dense vector or matrix \a other, "in-place" */
+ template<typename OtherDerived> void solveInPlace(MatrixBase<OtherDerived>& other) const;
+
+ /** Applies the inverse of \c *this to the sparse vector or matrix \a other, "in-place" */
+ template<typename OtherDerived> void solveInPlace(SparseMatrixBase<OtherDerived>& other) const;
+
+};
+
+namespace internal {
+
+template<typename ArgType, unsigned int Mode>
+struct unary_evaluator<TriangularView<ArgType,Mode>, IteratorBased>
+ : evaluator_base<TriangularView<ArgType,Mode> >
+{
+ typedef TriangularView<ArgType,Mode> XprType;
+
+protected:
+
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::StorageIndex StorageIndex;
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+
+ enum { SkipFirst = ((Mode&Lower) && !(ArgType::Flags&RowMajorBit))
+ || ((Mode&Upper) && (ArgType::Flags&RowMajorBit)),
+ SkipLast = !SkipFirst,
+ SkipDiag = (Mode&ZeroDiag) ? 1 : 0,
+ HasUnitDiag = (Mode&UnitDiag) ? 1 : 0
+ };
+
+public:
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = XprType::Flags
+ };
+
+ explicit unary_evaluator(const XprType &xpr) : m_argImpl(xpr.nestedExpression()), m_arg(xpr.nestedExpression()) {}
+
+ inline Index nonZerosEstimate() const {
+ return m_argImpl.nonZerosEstimate();
+ }
+
+ class InnerIterator : public EvalIterator
+ {
+ typedef EvalIterator Base;
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& xprEval, Index outer)
+ : Base(xprEval.m_argImpl,outer), m_returnOne(false), m_containsDiag(Base::outer()<xprEval.m_arg.innerSize())
+ {
+ if(SkipFirst)
+ {
+ while((*this) && ((HasUnitDiag||SkipDiag) ? this->index()<=outer : this->index()<outer))
+ Base::operator++();
+ if(HasUnitDiag)
+ m_returnOne = m_containsDiag;
+ }
+ else if(HasUnitDiag && ((!Base::operator bool()) || Base::index()>=Base::outer()))
+ {
+ if((!SkipFirst) && Base::operator bool())
+ Base::operator++();
+ m_returnOne = m_containsDiag;
+ }
+ }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ if(HasUnitDiag && m_returnOne)
+ m_returnOne = false;
+ else
+ {
+ Base::operator++();
+ if(HasUnitDiag && (!SkipFirst) && ((!Base::operator bool()) || Base::index()>=Base::outer()))
+ {
+ if((!SkipFirst) && Base::operator bool())
+ Base::operator++();
+ m_returnOne = m_containsDiag;
+ }
+ }
+ return *this;
+ }
+
+ EIGEN_STRONG_INLINE operator bool() const
+ {
+ if(HasUnitDiag && m_returnOne)
+ return true;
+ if(SkipFirst) return Base::operator bool();
+ else
+ {
+ if (SkipDiag) return (Base::operator bool() && this->index() < this->outer());
+ else return (Base::operator bool() && this->index() <= this->outer());
+ }
+ }
+
+// inline Index row() const { return (ArgType::Flags&RowMajorBit ? Base::outer() : this->index()); }
+// inline Index col() const { return (ArgType::Flags&RowMajorBit ? this->index() : Base::outer()); }
+ inline StorageIndex index() const
+ {
+ if(HasUnitDiag && m_returnOne) return internal::convert_index<StorageIndex>(Base::outer());
+ else return Base::index();
+ }
+ inline Scalar value() const
+ {
+ if(HasUnitDiag && m_returnOne) return Scalar(1);
+ else return Base::value();
+ }
+
+ protected:
+ bool m_returnOne;
+ bool m_containsDiag;
+ private:
+ Scalar& valueRef();
+ };
+
+protected:
+ evaluator<ArgType> m_argImpl;
+ const ArgType& m_arg;
+};
+
+} // end namespace internal
+
+template<typename Derived>
+template<int Mode>
+inline const TriangularView<const Derived, Mode>
+SparseMatrixBase<Derived>::triangularView() const
+{
+ return TriangularView<const Derived, Mode>(derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_TRIANGULARVIEW_H
diff --git a/Eigen/src/SparseCore/SparseUtil.h b/Eigen/src/SparseCore/SparseUtil.h
new file mode 100644
index 0000000..ceb9368
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseUtil.h
@@ -0,0 +1,186 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEUTIL_H
+#define EIGEN_SPARSEUTIL_H
+
+namespace Eigen {
+
+#ifdef NDEBUG
+#define EIGEN_DBG_SPARSE(X)
+#else
+#define EIGEN_DBG_SPARSE(X) X
+#endif
+
+#define EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
+template<typename OtherDerived> \
+EIGEN_STRONG_INLINE Derived& operator Op(const Eigen::SparseMatrixBase<OtherDerived>& other) \
+{ \
+ return Base::operator Op(other.derived()); \
+} \
+EIGEN_STRONG_INLINE Derived& operator Op(const Derived& other) \
+{ \
+ return Base::operator Op(other); \
+}
+
+#define EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \
+template<typename Other> \
+EIGEN_STRONG_INLINE Derived& operator Op(const Other& scalar) \
+{ \
+ return Base::operator Op(scalar); \
+}
+
+#define EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
+EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, =)
+
+
+#define EIGEN_SPARSE_PUBLIC_INTERFACE(Derived) \
+ EIGEN_GENERIC_PUBLIC_INTERFACE(Derived)
+
+
+const int CoherentAccessPattern = 0x1;
+const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern;
+const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern;
+const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern;
+
+template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class SparseMatrix;
+template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class DynamicSparseMatrix;
+template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class SparseVector;
+template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class MappedSparseMatrix;
+
+template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView;
+template<typename Lhs, typename Rhs> class SparseDiagonalProduct;
+template<typename MatrixType> class SparseView;
+
+template<typename Lhs, typename Rhs> class SparseSparseProduct;
+template<typename Lhs, typename Rhs> class SparseTimeDenseProduct;
+template<typename Lhs, typename Rhs> class DenseTimeSparseProduct;
+template<typename Lhs, typename Rhs, bool Transpose> class SparseDenseOuterProduct;
+
+template<typename Lhs, typename Rhs> struct SparseSparseProductReturnType;
+template<typename Lhs, typename Rhs,
+ int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct DenseSparseProductReturnType;
+
+template<typename Lhs, typename Rhs,
+ int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct SparseDenseProductReturnType;
+template<typename MatrixType,int UpLo> class SparseSymmetricPermutationProduct;
+
+namespace internal {
+
+template<typename T,int Rows,int Cols,int Flags> struct sparse_eval;
+
+template<typename T> struct eval<T,Sparse>
+ : sparse_eval<T, traits<T>::RowsAtCompileTime,traits<T>::ColsAtCompileTime,traits<T>::Flags>
+{};
+
+template<typename T,int Cols,int Flags> struct sparse_eval<T,1,Cols,Flags> {
+ typedef typename traits<T>::Scalar _Scalar;
+ typedef typename traits<T>::StorageIndex _StorageIndex;
+ public:
+ typedef SparseVector<_Scalar, RowMajor, _StorageIndex> type;
+};
+
+template<typename T,int Rows,int Flags> struct sparse_eval<T,Rows,1,Flags> {
+ typedef typename traits<T>::Scalar _Scalar;
+ typedef typename traits<T>::StorageIndex _StorageIndex;
+ public:
+ typedef SparseVector<_Scalar, ColMajor, _StorageIndex> type;
+};
+
+// TODO this seems almost identical to plain_matrix_type<T, Sparse>
+template<typename T,int Rows,int Cols,int Flags> struct sparse_eval {
+ typedef typename traits<T>::Scalar _Scalar;
+ typedef typename traits<T>::StorageIndex _StorageIndex;
+ enum { _Options = ((Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
+ public:
+ typedef SparseMatrix<_Scalar, _Options, _StorageIndex> type;
+};
+
+template<typename T,int Flags> struct sparse_eval<T,1,1,Flags> {
+ typedef typename traits<T>::Scalar _Scalar;
+ public:
+ typedef Matrix<_Scalar, 1, 1> type;
+};
+
+template<typename T> struct plain_matrix_type<T,Sparse>
+{
+ typedef typename traits<T>::Scalar _Scalar;
+ typedef typename traits<T>::StorageIndex _StorageIndex;
+ enum { _Options = ((evaluator<T>::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
+ public:
+ typedef SparseMatrix<_Scalar, _Options, _StorageIndex> type;
+};
+
+template<typename T>
+struct plain_object_eval<T,Sparse>
+ : sparse_eval<T, traits<T>::RowsAtCompileTime,traits<T>::ColsAtCompileTime, evaluator<T>::Flags>
+{};
+
+template<typename Decomposition, typename RhsType>
+struct solve_traits<Decomposition,RhsType,Sparse>
+{
+ typedef typename sparse_eval<RhsType, RhsType::RowsAtCompileTime, RhsType::ColsAtCompileTime,traits<RhsType>::Flags>::type PlainObject;
+};
+
+template<typename Derived>
+struct generic_xpr_base<Derived, MatrixXpr, Sparse>
+{
+ typedef SparseMatrixBase<Derived> type;
+};
+
+struct SparseTriangularShape { static std::string debugName() { return "SparseTriangularShape"; } };
+struct SparseSelfAdjointShape { static std::string debugName() { return "SparseSelfAdjointShape"; } };
+
+template<> struct glue_shapes<SparseShape,SelfAdjointShape> { typedef SparseSelfAdjointShape type; };
+template<> struct glue_shapes<SparseShape,TriangularShape > { typedef SparseTriangularShape type; };
+
+// return type of SparseCompressedBase::lower_bound;
+struct LowerBoundIndex {
+ LowerBoundIndex() : value(-1), found(false) {}
+ LowerBoundIndex(Index val, bool ok) : value(val), found(ok) {}
+ Index value;
+ bool found;
+};
+
+} // end namespace internal
+
+/** \ingroup SparseCore_Module
+ *
+ * \class Triplet
+ *
+ * \brief A small structure to hold a non zero as a triplet (i,j,value).
+ *
+ * \sa SparseMatrix::setFromTriplets()
+ */
+template<typename Scalar, typename StorageIndex=typename SparseMatrix<Scalar>::StorageIndex >
+class Triplet
+{
+public:
+ Triplet() : m_row(0), m_col(0), m_value(0) {}
+
+ Triplet(const StorageIndex& i, const StorageIndex& j, const Scalar& v = Scalar(0))
+ : m_row(i), m_col(j), m_value(v)
+ {}
+
+ /** \returns the row index of the element */
+ const StorageIndex& row() const { return m_row; }
+
+ /** \returns the column index of the element */
+ const StorageIndex& col() const { return m_col; }
+
+ /** \returns the value of the element */
+ const Scalar& value() const { return m_value; }
+protected:
+ StorageIndex m_row, m_col;
+ Scalar m_value;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEUTIL_H
diff --git a/Eigen/src/SparseCore/SparseVector.h b/Eigen/src/SparseCore/SparseVector.h
new file mode 100644
index 0000000..05779be
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseVector.h
@@ -0,0 +1,478 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEVECTOR_H
+#define EIGEN_SPARSEVECTOR_H
+
+namespace Eigen {
+
+/** \ingroup SparseCore_Module
+ * \class SparseVector
+ *
+ * \brief a sparse vector class
+ *
+ * \tparam _Scalar the scalar type, i.e. the type of the coefficients
+ *
+ * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
+ *
+ * This class can be extended with the help of the plugin mechanism described on the page
+ * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN.
+ */
+
+namespace internal {
+template<typename _Scalar, int _Options, typename _StorageIndex>
+struct traits<SparseVector<_Scalar, _Options, _StorageIndex> >
+{
+ typedef _Scalar Scalar;
+ typedef _StorageIndex StorageIndex;
+ typedef Sparse StorageKind;
+ typedef MatrixXpr XprKind;
+ enum {
+ IsColVector = (_Options & RowMajorBit) ? 0 : 1,
+
+ RowsAtCompileTime = IsColVector ? Dynamic : 1,
+ ColsAtCompileTime = IsColVector ? 1 : Dynamic,
+ MaxRowsAtCompileTime = RowsAtCompileTime,
+ MaxColsAtCompileTime = ColsAtCompileTime,
+ Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit,
+ SupportedAccessPatterns = InnerRandomAccessPattern
+ };
+};
+
+// Sparse-Vector-Assignment kinds:
+enum {
+ SVA_RuntimeSwitch,
+ SVA_Inner,
+ SVA_Outer
+};
+
+template< typename Dest, typename Src,
+ int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch
+ : Src::InnerSizeAtCompileTime==1 ? SVA_Outer
+ : SVA_Inner>
+struct sparse_vector_assign_selector;
+
+}
+
+template<typename _Scalar, int _Options, typename _StorageIndex>
+class SparseVector
+ : public SparseCompressedBase<SparseVector<_Scalar, _Options, _StorageIndex> >
+{
+ typedef SparseCompressedBase<SparseVector> Base;
+ using Base::convert_index;
+ public:
+ EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector)
+ EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=)
+ EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=)
+
+ typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
+ enum { IsColVector = internal::traits<SparseVector>::IsColVector };
+
+ enum {
+ Options = _Options
+ };
+
+ EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; }
+ EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; }
+ EIGEN_STRONG_INLINE Index innerSize() const { return m_size; }
+ EIGEN_STRONG_INLINE Index outerSize() const { return 1; }
+
+ EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); }
+ EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); }
+
+ EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
+ EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }
+
+ inline const StorageIndex* outerIndexPtr() const { return 0; }
+ inline StorageIndex* outerIndexPtr() { return 0; }
+ inline const StorageIndex* innerNonZeroPtr() const { return 0; }
+ inline StorageIndex* innerNonZeroPtr() { return 0; }
+
+ /** \internal */
+ inline Storage& data() { return m_data; }
+ /** \internal */
+ inline const Storage& data() const { return m_data; }
+
+ inline Scalar coeff(Index row, Index col) const
+ {
+ eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
+ return coeff(IsColVector ? row : col);
+ }
+ inline Scalar coeff(Index i) const
+ {
+ eigen_assert(i>=0 && i<m_size);
+ return m_data.at(StorageIndex(i));
+ }
+
+ inline Scalar& coeffRef(Index row, Index col)
+ {
+ eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
+ return coeffRef(IsColVector ? row : col);
+ }
+
+ /** \returns a reference to the coefficient value at given index \a i
+ * This operation involes a log(rho*size) binary search. If the coefficient does not
+ * exist yet, then a sorted insertion into a sequential buffer is performed.
+ *
+ * This insertion might be very costly if the number of nonzeros above \a i is large.
+ */
+ inline Scalar& coeffRef(Index i)
+ {
+ eigen_assert(i>=0 && i<m_size);
+
+ return m_data.atWithInsertion(StorageIndex(i));
+ }
+
+ public:
+
+ typedef typename Base::InnerIterator InnerIterator;
+ typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
+
+ inline void setZero() { m_data.clear(); }
+
+ /** \returns the number of non zero coefficients */
+ inline Index nonZeros() const { return m_data.size(); }
+
+ inline void startVec(Index outer)
+ {
+ EIGEN_UNUSED_VARIABLE(outer);
+ eigen_assert(outer==0);
+ }
+
+ inline Scalar& insertBackByOuterInner(Index outer, Index inner)
+ {
+ EIGEN_UNUSED_VARIABLE(outer);
+ eigen_assert(outer==0);
+ return insertBack(inner);
+ }
+ inline Scalar& insertBack(Index i)
+ {
+ m_data.append(0, i);
+ return m_data.value(m_data.size()-1);
+ }
+
+ Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
+ {
+ EIGEN_UNUSED_VARIABLE(outer);
+ eigen_assert(outer==0);
+ return insertBackUnordered(inner);
+ }
+ inline Scalar& insertBackUnordered(Index i)
+ {
+ m_data.append(0, i);
+ return m_data.value(m_data.size()-1);
+ }
+
+ inline Scalar& insert(Index row, Index col)
+ {
+ eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
+
+ Index inner = IsColVector ? row : col;
+ Index outer = IsColVector ? col : row;
+ EIGEN_ONLY_USED_FOR_DEBUG(outer);
+ eigen_assert(outer==0);
+ return insert(inner);
+ }
+ Scalar& insert(Index i)
+ {
+ eigen_assert(i>=0 && i<m_size);
+
+ Index startId = 0;
+ Index p = Index(m_data.size()) - 1;
+ // TODO smart realloc
+ m_data.resize(p+2,1);
+
+ while ( (p >= startId) && (m_data.index(p) > i) )
+ {
+ m_data.index(p+1) = m_data.index(p);
+ m_data.value(p+1) = m_data.value(p);
+ --p;
+ }
+ m_data.index(p+1) = convert_index(i);
+ m_data.value(p+1) = 0;
+ return m_data.value(p+1);
+ }
+
+ /**
+ */
+ inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); }
+
+
+ inline void finalize() {}
+
+ /** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */
+ void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
+ {
+ m_data.prune(reference,epsilon);
+ }
+
+ /** Resizes the sparse vector to \a rows x \a cols
+ *
+ * This method is provided for compatibility with matrices.
+ * For a column vector, \a cols must be equal to 1.
+ * For a row vector, \a rows must be equal to 1.
+ *
+ * \sa resize(Index)
+ */
+ void resize(Index rows, Index cols)
+ {
+ eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1");
+ resize(IsColVector ? rows : cols);
+ }
+
+ /** Resizes the sparse vector to \a newSize
+ * This method deletes all entries, thus leaving an empty sparse vector
+ *
+ * \sa conservativeResize(), setZero() */
+ void resize(Index newSize)
+ {
+ m_size = newSize;
+ m_data.clear();
+ }
+
+ /** Resizes the sparse vector to \a newSize, while leaving old values untouched.
+ *
+ * If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved.
+ * Call .data().squeeze() to free extra memory.
+ *
+ * \sa reserve(), setZero()
+ */
+ void conservativeResize(Index newSize)
+ {
+ if (newSize < m_size)
+ {
+ Index i = 0;
+ while (i<m_data.size() && m_data.index(i)<newSize) ++i;
+ m_data.resize(i);
+ }
+ m_size = newSize;
+ }
+
+ void resizeNonZeros(Index size) { m_data.resize(size); }
+
+ inline SparseVector() : m_size(0) { check_template_parameters(); resize(0); }
+
+ explicit inline SparseVector(Index size) : m_size(0) { check_template_parameters(); resize(size); }
+
+ inline SparseVector(Index rows, Index cols) : m_size(0) { check_template_parameters(); resize(rows,cols); }
+
+ template<typename OtherDerived>
+ inline SparseVector(const SparseMatrixBase<OtherDerived>& other)
+ : m_size(0)
+ {
+ #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
+ EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
+ #endif
+ check_template_parameters();
+ *this = other.derived();
+ }
+
+ inline SparseVector(const SparseVector& other)
+ : Base(other), m_size(0)
+ {
+ check_template_parameters();
+ *this = other.derived();
+ }
+
+ /** Swaps the values of \c *this and \a other.
+ * Overloaded for performance: this version performs a \em shallow swap by swapping pointers and attributes only.
+ * \sa SparseMatrixBase::swap()
+ */
+ inline void swap(SparseVector& other)
+ {
+ std::swap(m_size, other.m_size);
+ m_data.swap(other.m_data);
+ }
+
+ template<int OtherOptions>
+ inline void swap(SparseMatrix<Scalar,OtherOptions,StorageIndex>& other)
+ {
+ eigen_assert(other.outerSize()==1);
+ std::swap(m_size, other.m_innerSize);
+ m_data.swap(other.m_data);
+ }
+
+ inline SparseVector& operator=(const SparseVector& other)
+ {
+ if (other.isRValue())
+ {
+ swap(other.const_cast_derived());
+ }
+ else
+ {
+ resize(other.size());
+ m_data = other.m_data;
+ }
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other)
+ {
+ SparseVector tmp(other.size());
+ internal::sparse_vector_assign_selector<SparseVector,OtherDerived>::run(tmp,other.derived());
+ this->swap(tmp);
+ return *this;
+ }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename Lhs, typename Rhs>
+ inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
+ {
+ return Base::operator=(product);
+ }
+ #endif
+
+ friend std::ostream & operator << (std::ostream & s, const SparseVector& m)
+ {
+ for (Index i=0; i<m.nonZeros(); ++i)
+ s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
+ s << std::endl;
+ return s;
+ }
+
+ /** Destructor */
+ inline ~SparseVector() {}
+
+ /** Overloaded for performance */
+ Scalar sum() const;
+
+ public:
+
+ /** \internal \deprecated use setZero() and reserve() */
+ EIGEN_DEPRECATED void startFill(Index reserve)
+ {
+ setZero();
+ m_data.reserve(reserve);
+ }
+
+ /** \internal \deprecated use insertBack(Index,Index) */
+ EIGEN_DEPRECATED Scalar& fill(Index r, Index c)
+ {
+ eigen_assert(r==0 || c==0);
+ return fill(IsColVector ? r : c);
+ }
+
+ /** \internal \deprecated use insertBack(Index) */
+ EIGEN_DEPRECATED Scalar& fill(Index i)
+ {
+ m_data.append(0, i);
+ return m_data.value(m_data.size()-1);
+ }
+
+ /** \internal \deprecated use insert(Index,Index) */
+ EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c)
+ {
+ eigen_assert(r==0 || c==0);
+ return fillrand(IsColVector ? r : c);
+ }
+
+ /** \internal \deprecated use insert(Index) */
+ EIGEN_DEPRECATED Scalar& fillrand(Index i)
+ {
+ return insert(i);
+ }
+
+ /** \internal \deprecated use finalize() */
+ EIGEN_DEPRECATED void endFill() {}
+
+ // These two functions were here in the 3.1 release, so let's keep them in case some code rely on them.
+ /** \internal \deprecated use data() */
+ EIGEN_DEPRECATED Storage& _data() { return m_data; }
+ /** \internal \deprecated use data() */
+ EIGEN_DEPRECATED const Storage& _data() const { return m_data; }
+
+# ifdef EIGEN_SPARSEVECTOR_PLUGIN
+# include EIGEN_SPARSEVECTOR_PLUGIN
+# endif
+
+protected:
+
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
+ EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
+ }
+
+ Storage m_data;
+ Index m_size;
+};
+
+namespace internal {
+
+template<typename _Scalar, int _Options, typename _Index>
+struct evaluator<SparseVector<_Scalar,_Options,_Index> >
+ : evaluator_base<SparseVector<_Scalar,_Options,_Index> >
+{
+ typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType;
+ typedef evaluator_base<SparseVectorType> Base;
+ typedef typename SparseVectorType::InnerIterator InnerIterator;
+ typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator;
+
+ enum {
+ CoeffReadCost = NumTraits<_Scalar>::ReadCost,
+ Flags = SparseVectorType::Flags
+ };
+
+ evaluator() : Base() {}
+
+ explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat)
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ inline Index nonZerosEstimate() const {
+ return m_matrix->nonZeros();
+ }
+
+ operator SparseVectorType&() { return m_matrix->const_cast_derived(); }
+ operator const SparseVectorType&() const { return *m_matrix; }
+
+ const SparseVectorType *m_matrix;
+};
+
+template< typename Dest, typename Src>
+struct sparse_vector_assign_selector<Dest,Src,SVA_Inner> {
+ static void run(Dest& dst, const Src& src) {
+ eigen_internal_assert(src.innerSize()==src.size());
+ typedef internal::evaluator<Src> SrcEvaluatorType;
+ SrcEvaluatorType srcEval(src);
+ for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it)
+ dst.insert(it.index()) = it.value();
+ }
+};
+
+template< typename Dest, typename Src>
+struct sparse_vector_assign_selector<Dest,Src,SVA_Outer> {
+ static void run(Dest& dst, const Src& src) {
+ eigen_internal_assert(src.outerSize()==src.size());
+ typedef internal::evaluator<Src> SrcEvaluatorType;
+ SrcEvaluatorType srcEval(src);
+ for(Index i=0; i<src.size(); ++i)
+ {
+ typename SrcEvaluatorType::InnerIterator it(srcEval, i);
+ if(it)
+ dst.insert(i) = it.value();
+ }
+ }
+};
+
+template< typename Dest, typename Src>
+struct sparse_vector_assign_selector<Dest,Src,SVA_RuntimeSwitch> {
+ static void run(Dest& dst, const Src& src) {
+ if(src.outerSize()==1) sparse_vector_assign_selector<Dest,Src,SVA_Inner>::run(dst, src);
+ else sparse_vector_assign_selector<Dest,Src,SVA_Outer>::run(dst, src);
+ }
+};
+
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEVECTOR_H
diff --git a/Eigen/src/SparseCore/SparseView.h b/Eigen/src/SparseCore/SparseView.h
new file mode 100644
index 0000000..92b3d1f
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseView.h
@@ -0,0 +1,254 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Daniel Lowengrub <lowdanie@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEVIEW_H
+#define EIGEN_SPARSEVIEW_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename MatrixType>
+struct traits<SparseView<MatrixType> > : traits<MatrixType>
+{
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef Sparse StorageKind;
+ enum {
+ Flags = int(traits<MatrixType>::Flags) & (RowMajorBit)
+ };
+};
+
+} // end namespace internal
+
+/** \ingroup SparseCore_Module
+ * \class SparseView
+ *
+ * \brief Expression of a dense or sparse matrix with zero or too small values removed
+ *
+ * \tparam MatrixType the type of the object of which we are removing the small entries
+ *
+ * This class represents an expression of a given dense or sparse matrix with
+ * entries smaller than \c reference * \c epsilon are removed.
+ * It is the return type of MatrixBase::sparseView() and SparseMatrixBase::pruned()
+ * and most of the time this is the only way it is used.
+ *
+ * \sa MatrixBase::sparseView(), SparseMatrixBase::pruned()
+ */
+template<typename MatrixType>
+class SparseView : public SparseMatrixBase<SparseView<MatrixType> >
+{
+ typedef typename MatrixType::Nested MatrixTypeNested;
+ typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
+ typedef SparseMatrixBase<SparseView > Base;
+public:
+ EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView)
+ typedef typename internal::remove_all<MatrixType>::type NestedExpression;
+
+ explicit SparseView(const MatrixType& mat, const Scalar& reference = Scalar(0),
+ const RealScalar &epsilon = NumTraits<Scalar>::dummy_precision())
+ : m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {}
+
+ inline Index rows() const { return m_matrix.rows(); }
+ inline Index cols() const { return m_matrix.cols(); }
+
+ inline Index innerSize() const { return m_matrix.innerSize(); }
+ inline Index outerSize() const { return m_matrix.outerSize(); }
+
+ /** \returns the nested expression */
+ const typename internal::remove_all<MatrixTypeNested>::type&
+ nestedExpression() const { return m_matrix; }
+
+ Scalar reference() const { return m_reference; }
+ RealScalar epsilon() const { return m_epsilon; }
+
+protected:
+ MatrixTypeNested m_matrix;
+ Scalar m_reference;
+ RealScalar m_epsilon;
+};
+
+namespace internal {
+
+// TODO find a way to unify the two following variants
+// This is tricky because implementing an inner iterator on top of an IndexBased evaluator is
+// not easy because the evaluators do not expose the sizes of the underlying expression.
+
+template<typename ArgType>
+struct unary_evaluator<SparseView<ArgType>, IteratorBased>
+ : public evaluator_base<SparseView<ArgType> >
+{
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+ public:
+ typedef SparseView<ArgType> XprType;
+
+ class InnerIterator : public EvalIterator
+ {
+ protected:
+ typedef typename XprType::Scalar Scalar;
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer)
+ : EvalIterator(sve.m_argImpl,outer), m_view(sve.m_view)
+ {
+ incrementToNonZero();
+ }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ EvalIterator::operator++();
+ incrementToNonZero();
+ return *this;
+ }
+
+ using EvalIterator::value;
+
+ protected:
+ const XprType &m_view;
+
+ private:
+ void incrementToNonZero()
+ {
+ while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon()))
+ {
+ EvalIterator::operator++();
+ }
+ }
+ };
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = XprType::Flags
+ };
+
+ explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {}
+
+ protected:
+ evaluator<ArgType> m_argImpl;
+ const XprType &m_view;
+};
+
+template<typename ArgType>
+struct unary_evaluator<SparseView<ArgType>, IndexBased>
+ : public evaluator_base<SparseView<ArgType> >
+{
+ public:
+ typedef SparseView<ArgType> XprType;
+ protected:
+ enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit };
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::StorageIndex StorageIndex;
+ public:
+
+ class InnerIterator
+ {
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer)
+ : m_sve(sve), m_inner(0), m_outer(outer), m_end(sve.m_view.innerSize())
+ {
+ incrementToNonZero();
+ }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ m_inner++;
+ incrementToNonZero();
+ return *this;
+ }
+
+ EIGEN_STRONG_INLINE Scalar value() const
+ {
+ return (IsRowMajor) ? m_sve.m_argImpl.coeff(m_outer, m_inner)
+ : m_sve.m_argImpl.coeff(m_inner, m_outer);
+ }
+
+ EIGEN_STRONG_INLINE StorageIndex index() const { return m_inner; }
+ inline Index row() const { return IsRowMajor ? m_outer : index(); }
+ inline Index col() const { return IsRowMajor ? index() : m_outer; }
+
+ EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
+
+ protected:
+ const unary_evaluator &m_sve;
+ Index m_inner;
+ const Index m_outer;
+ const Index m_end;
+
+ private:
+ void incrementToNonZero()
+ {
+ while((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon()))
+ {
+ m_inner++;
+ }
+ }
+ };
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = XprType::Flags
+ };
+
+ explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {}
+
+ protected:
+ evaluator<ArgType> m_argImpl;
+ const XprType &m_view;
+};
+
+} // end namespace internal
+
+/** \ingroup SparseCore_Module
+ *
+ * \returns a sparse expression of the dense expression \c *this with values smaller than
+ * \a reference * \a epsilon removed.
+ *
+ * This method is typically used when prototyping to convert a quickly assembled dense Matrix \c D to a SparseMatrix \c S:
+ * \code
+ * MatrixXd D(n,m);
+ * SparseMatrix<double> S;
+ * S = D.sparseView(); // suppress numerical zeros (exact)
+ * S = D.sparseView(reference);
+ * S = D.sparseView(reference,epsilon);
+ * \endcode
+ * where \a reference is a meaningful non zero reference value,
+ * and \a epsilon is a tolerance factor defaulting to NumTraits<Scalar>::dummy_precision().
+ *
+ * \sa SparseMatrixBase::pruned(), class SparseView */
+template<typename Derived>
+const SparseView<Derived> MatrixBase<Derived>::sparseView(const Scalar& reference,
+ const typename NumTraits<Scalar>::Real& epsilon) const
+{
+ return SparseView<Derived>(derived(), reference, epsilon);
+}
+
+/** \returns an expression of \c *this with values smaller than
+ * \a reference * \a epsilon removed.
+ *
+ * This method is typically used in conjunction with the product of two sparse matrices
+ * to automatically prune the smallest values as follows:
+ * \code
+ * C = (A*B).pruned(); // suppress numerical zeros (exact)
+ * C = (A*B).pruned(ref);
+ * C = (A*B).pruned(ref,epsilon);
+ * \endcode
+ * where \c ref is a meaningful non zero reference value.
+ * */
+template<typename Derived>
+const SparseView<Derived>
+SparseMatrixBase<Derived>::pruned(const Scalar& reference,
+ const RealScalar& epsilon) const
+{
+ return SparseView<Derived>(derived(), reference, epsilon);
+}
+
+} // end namespace Eigen
+
+#endif
diff --git a/Eigen/src/SparseCore/TriangularSolver.h b/Eigen/src/SparseCore/TriangularSolver.h
new file mode 100644
index 0000000..f9c56ba
--- /dev/null
+++ b/Eigen/src/SparseCore/TriangularSolver.h
@@ -0,0 +1,315 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSETRIANGULARSOLVER_H
+#define EIGEN_SPARSETRIANGULARSOLVER_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename Lhs, typename Rhs, int Mode,
+ int UpLo = (Mode & Lower)
+ ? Lower
+ : (Mode & Upper)
+ ? Upper
+ : -1,
+ int StorageOrder = int(traits<Lhs>::Flags) & RowMajorBit>
+struct sparse_solve_triangular_selector;
+
+// forward substitution, row-major
+template<typename Lhs, typename Rhs, int Mode>
+struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,RowMajor>
+{
+ typedef typename Rhs::Scalar Scalar;
+ typedef evaluator<Lhs> LhsEval;
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
+ static void run(const Lhs& lhs, Rhs& other)
+ {
+ LhsEval lhsEval(lhs);
+ for(Index col=0 ; col<other.cols() ; ++col)
+ {
+ for(Index i=0; i<lhs.rows(); ++i)
+ {
+ Scalar tmp = other.coeff(i,col);
+ Scalar lastVal(0);
+ Index lastIndex = 0;
+ for(LhsIterator it(lhsEval, i); it; ++it)
+ {
+ lastVal = it.value();
+ lastIndex = it.index();
+ if(lastIndex==i)
+ break;
+ tmp -= lastVal * other.coeff(lastIndex,col);
+ }
+ if (Mode & UnitDiag)
+ other.coeffRef(i,col) = tmp;
+ else
+ {
+ eigen_assert(lastIndex==i);
+ other.coeffRef(i,col) = tmp/lastVal;
+ }
+ }
+ }
+ }
+};
+
+// backward substitution, row-major
+template<typename Lhs, typename Rhs, int Mode>
+struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,RowMajor>
+{
+ typedef typename Rhs::Scalar Scalar;
+ typedef evaluator<Lhs> LhsEval;
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
+ static void run(const Lhs& lhs, Rhs& other)
+ {
+ LhsEval lhsEval(lhs);
+ for(Index col=0 ; col<other.cols() ; ++col)
+ {
+ for(Index i=lhs.rows()-1 ; i>=0 ; --i)
+ {
+ Scalar tmp = other.coeff(i,col);
+ Scalar l_ii(0);
+ LhsIterator it(lhsEval, i);
+ while(it && it.index()<i)
+ ++it;
+ if(!(Mode & UnitDiag))
+ {
+ eigen_assert(it && it.index()==i);
+ l_ii = it.value();
+ ++it;
+ }
+ else if (it && it.index() == i)
+ ++it;
+ for(; it; ++it)
+ {
+ tmp -= it.value() * other.coeff(it.index(),col);
+ }
+
+ if (Mode & UnitDiag) other.coeffRef(i,col) = tmp;
+ else other.coeffRef(i,col) = tmp/l_ii;
+ }
+ }
+ }
+};
+
+// forward substitution, col-major
+template<typename Lhs, typename Rhs, int Mode>
+struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,ColMajor>
+{
+ typedef typename Rhs::Scalar Scalar;
+ typedef evaluator<Lhs> LhsEval;
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
+ static void run(const Lhs& lhs, Rhs& other)
+ {
+ LhsEval lhsEval(lhs);
+ for(Index col=0 ; col<other.cols() ; ++col)
+ {
+ for(Index i=0; i<lhs.cols(); ++i)
+ {
+ Scalar& tmp = other.coeffRef(i,col);
+ if (tmp!=Scalar(0)) // optimization when other is actually sparse
+ {
+ LhsIterator it(lhsEval, i);
+ while(it && it.index()<i)
+ ++it;
+ if(!(Mode & UnitDiag))
+ {
+ eigen_assert(it && it.index()==i);
+ tmp /= it.value();
+ }
+ if (it && it.index()==i)
+ ++it;
+ for(; it; ++it)
+ other.coeffRef(it.index(), col) -= tmp * it.value();
+ }
+ }
+ }
+ }
+};
+
+// backward substitution, col-major
+template<typename Lhs, typename Rhs, int Mode>
+struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,ColMajor>
+{
+ typedef typename Rhs::Scalar Scalar;
+ typedef evaluator<Lhs> LhsEval;
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
+ static void run(const Lhs& lhs, Rhs& other)
+ {
+ LhsEval lhsEval(lhs);
+ for(Index col=0 ; col<other.cols() ; ++col)
+ {
+ for(Index i=lhs.cols()-1; i>=0; --i)
+ {
+ Scalar& tmp = other.coeffRef(i,col);
+ if (tmp!=Scalar(0)) // optimization when other is actually sparse
+ {
+ if(!(Mode & UnitDiag))
+ {
+ // TODO replace this by a binary search. make sure the binary search is safe for partially sorted elements
+ LhsIterator it(lhsEval, i);
+ while(it && it.index()!=i)
+ ++it;
+ eigen_assert(it && it.index()==i);
+ other.coeffRef(i,col) /= it.value();
+ }
+ LhsIterator it(lhsEval, i);
+ for(; it && it.index()<i; ++it)
+ other.coeffRef(it.index(), col) -= tmp * it.value();
+ }
+ }
+ }
+ }
+};
+
+} // end namespace internal
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+
+template<typename ExpressionType,unsigned int Mode>
+template<typename OtherDerived>
+void TriangularViewImpl<ExpressionType,Mode,Sparse>::solveInPlace(MatrixBase<OtherDerived>& other) const
+{
+ eigen_assert(derived().cols() == derived().rows() && derived().cols() == other.rows());
+ eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
+
+ enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit };
+
+ typedef typename internal::conditional<copy,
+ typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
+ OtherCopy otherCopy(other.derived());
+
+ internal::sparse_solve_triangular_selector<ExpressionType, typename internal::remove_reference<OtherCopy>::type, Mode>::run(derived().nestedExpression(), otherCopy);
+
+ if (copy)
+ other = otherCopy;
+}
+#endif
+
+// pure sparse path
+
+namespace internal {
+
+template<typename Lhs, typename Rhs, int Mode,
+ int UpLo = (Mode & Lower)
+ ? Lower
+ : (Mode & Upper)
+ ? Upper
+ : -1,
+ int StorageOrder = int(Lhs::Flags) & (RowMajorBit)>
+struct sparse_solve_triangular_sparse_selector;
+
+// forward substitution, col-major
+template<typename Lhs, typename Rhs, int Mode, int UpLo>
+struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
+{
+ typedef typename Rhs::Scalar Scalar;
+ typedef typename promote_index_type<typename traits<Lhs>::StorageIndex,
+ typename traits<Rhs>::StorageIndex>::type StorageIndex;
+ static void run(const Lhs& lhs, Rhs& other)
+ {
+ const bool IsLower = (UpLo==Lower);
+ AmbiVector<Scalar,StorageIndex> tempVector(other.rows()*2);
+ tempVector.setBounds(0,other.rows());
+
+ Rhs res(other.rows(), other.cols());
+ res.reserve(other.nonZeros());
+
+ for(Index col=0 ; col<other.cols() ; ++col)
+ {
+ // FIXME estimate number of non zeros
+ tempVector.init(.99/*float(other.col(col).nonZeros())/float(other.rows())*/);
+ tempVector.setZero();
+ tempVector.restart();
+ for (typename Rhs::InnerIterator rhsIt(other, col); rhsIt; ++rhsIt)
+ {
+ tempVector.coeffRef(rhsIt.index()) = rhsIt.value();
+ }
+
+ for(Index i=IsLower?0:lhs.cols()-1;
+ IsLower?i<lhs.cols():i>=0;
+ i+=IsLower?1:-1)
+ {
+ tempVector.restart();
+ Scalar& ci = tempVector.coeffRef(i);
+ if (ci!=Scalar(0))
+ {
+ // find
+ typename Lhs::InnerIterator it(lhs, i);
+ if(!(Mode & UnitDiag))
+ {
+ if (IsLower)
+ {
+ eigen_assert(it.index()==i);
+ ci /= it.value();
+ }
+ else
+ ci /= lhs.coeff(i,i);
+ }
+ tempVector.restart();
+ if (IsLower)
+ {
+ if (it.index()==i)
+ ++it;
+ for(; it; ++it)
+ tempVector.coeffRef(it.index()) -= ci * it.value();
+ }
+ else
+ {
+ for(; it && it.index()<i; ++it)
+ tempVector.coeffRef(it.index()) -= ci * it.value();
+ }
+ }
+ }
+
+
+ Index count = 0;
+ // FIXME compute a reference value to filter zeros
+ for (typename AmbiVector<Scalar,StorageIndex>::Iterator it(tempVector/*,1e-12*/); it; ++it)
+ {
+ ++ count;
+// std::cerr << "fill " << it.index() << ", " << col << "\n";
+// std::cout << it.value() << " ";
+ // FIXME use insertBack
+ res.insert(it.index(), col) = it.value();
+ }
+// std::cout << "tempVector.nonZeros() == " << int(count) << " / " << (other.rows()) << "\n";
+ }
+ res.finalize();
+ other = res.markAsRValue();
+ }
+};
+
+} // end namespace internal
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename ExpressionType,unsigned int Mode>
+template<typename OtherDerived>
+void TriangularViewImpl<ExpressionType,Mode,Sparse>::solveInPlace(SparseMatrixBase<OtherDerived>& other) const
+{
+ eigen_assert(derived().cols() == derived().rows() && derived().cols() == other.rows());
+ eigen_assert( (!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
+
+// enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit };
+
+// typedef typename internal::conditional<copy,
+// typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
+// OtherCopy otherCopy(other.derived());
+
+ internal::sparse_solve_triangular_sparse_selector<ExpressionType, OtherDerived, Mode>::run(derived().nestedExpression(), other.derived());
+
+// if (copy)
+// other = otherCopy;
+}
+#endif
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSETRIANGULARSOLVER_H