diff options
Diffstat (limited to 'Eigen/src/SparseCore/SparseVector.h')
-rw-r--r-- | Eigen/src/SparseCore/SparseVector.h | 478 |
1 files changed, 478 insertions, 0 deletions
diff --git a/Eigen/src/SparseCore/SparseVector.h b/Eigen/src/SparseCore/SparseVector.h new file mode 100644 index 0000000..05779be --- /dev/null +++ b/Eigen/src/SparseCore/SparseVector.h @@ -0,0 +1,478 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEVECTOR_H +#define EIGEN_SPARSEVECTOR_H + +namespace Eigen { + +/** \ingroup SparseCore_Module + * \class SparseVector + * + * \brief a sparse vector class + * + * \tparam _Scalar the scalar type, i.e. the type of the coefficients + * + * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN. + */ + +namespace internal { +template<typename _Scalar, int _Options, typename _StorageIndex> +struct traits<SparseVector<_Scalar, _Options, _StorageIndex> > +{ + typedef _Scalar Scalar; + typedef _StorageIndex StorageIndex; + typedef Sparse StorageKind; + typedef MatrixXpr XprKind; + enum { + IsColVector = (_Options & RowMajorBit) ? 0 : 1, + + RowsAtCompileTime = IsColVector ? Dynamic : 1, + ColsAtCompileTime = IsColVector ? 1 : Dynamic, + MaxRowsAtCompileTime = RowsAtCompileTime, + MaxColsAtCompileTime = ColsAtCompileTime, + Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit, + SupportedAccessPatterns = InnerRandomAccessPattern + }; +}; + +// Sparse-Vector-Assignment kinds: +enum { + SVA_RuntimeSwitch, + SVA_Inner, + SVA_Outer +}; + +template< typename Dest, typename Src, + int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch + : Src::InnerSizeAtCompileTime==1 ? SVA_Outer + : SVA_Inner> +struct sparse_vector_assign_selector; + +} + +template<typename _Scalar, int _Options, typename _StorageIndex> +class SparseVector + : public SparseCompressedBase<SparseVector<_Scalar, _Options, _StorageIndex> > +{ + typedef SparseCompressedBase<SparseVector> Base; + using Base::convert_index; + public: + EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector) + EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=) + EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=) + + typedef internal::CompressedStorage<Scalar,StorageIndex> Storage; + enum { IsColVector = internal::traits<SparseVector>::IsColVector }; + + enum { + Options = _Options + }; + + EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; } + EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; } + EIGEN_STRONG_INLINE Index innerSize() const { return m_size; } + EIGEN_STRONG_INLINE Index outerSize() const { return 1; } + + EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); } + EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); } + + EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } + EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } + + inline const StorageIndex* outerIndexPtr() const { return 0; } + inline StorageIndex* outerIndexPtr() { return 0; } + inline const StorageIndex* innerNonZeroPtr() const { return 0; } + inline StorageIndex* innerNonZeroPtr() { return 0; } + + /** \internal */ + inline Storage& data() { return m_data; } + /** \internal */ + inline const Storage& data() const { return m_data; } + + inline Scalar coeff(Index row, Index col) const + { + eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); + return coeff(IsColVector ? row : col); + } + inline Scalar coeff(Index i) const + { + eigen_assert(i>=0 && i<m_size); + return m_data.at(StorageIndex(i)); + } + + inline Scalar& coeffRef(Index row, Index col) + { + eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); + return coeffRef(IsColVector ? row : col); + } + + /** \returns a reference to the coefficient value at given index \a i + * This operation involes a log(rho*size) binary search. If the coefficient does not + * exist yet, then a sorted insertion into a sequential buffer is performed. + * + * This insertion might be very costly if the number of nonzeros above \a i is large. + */ + inline Scalar& coeffRef(Index i) + { + eigen_assert(i>=0 && i<m_size); + + return m_data.atWithInsertion(StorageIndex(i)); + } + + public: + + typedef typename Base::InnerIterator InnerIterator; + typedef typename Base::ReverseInnerIterator ReverseInnerIterator; + + inline void setZero() { m_data.clear(); } + + /** \returns the number of non zero coefficients */ + inline Index nonZeros() const { return m_data.size(); } + + inline void startVec(Index outer) + { + EIGEN_UNUSED_VARIABLE(outer); + eigen_assert(outer==0); + } + + inline Scalar& insertBackByOuterInner(Index outer, Index inner) + { + EIGEN_UNUSED_VARIABLE(outer); + eigen_assert(outer==0); + return insertBack(inner); + } + inline Scalar& insertBack(Index i) + { + m_data.append(0, i); + return m_data.value(m_data.size()-1); + } + + Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) + { + EIGEN_UNUSED_VARIABLE(outer); + eigen_assert(outer==0); + return insertBackUnordered(inner); + } + inline Scalar& insertBackUnordered(Index i) + { + m_data.append(0, i); + return m_data.value(m_data.size()-1); + } + + inline Scalar& insert(Index row, Index col) + { + eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); + + Index inner = IsColVector ? row : col; + Index outer = IsColVector ? col : row; + EIGEN_ONLY_USED_FOR_DEBUG(outer); + eigen_assert(outer==0); + return insert(inner); + } + Scalar& insert(Index i) + { + eigen_assert(i>=0 && i<m_size); + + Index startId = 0; + Index p = Index(m_data.size()) - 1; + // TODO smart realloc + m_data.resize(p+2,1); + + while ( (p >= startId) && (m_data.index(p) > i) ) + { + m_data.index(p+1) = m_data.index(p); + m_data.value(p+1) = m_data.value(p); + --p; + } + m_data.index(p+1) = convert_index(i); + m_data.value(p+1) = 0; + return m_data.value(p+1); + } + + /** + */ + inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); } + + + inline void finalize() {} + + /** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */ + void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) + { + m_data.prune(reference,epsilon); + } + + /** Resizes the sparse vector to \a rows x \a cols + * + * This method is provided for compatibility with matrices. + * For a column vector, \a cols must be equal to 1. + * For a row vector, \a rows must be equal to 1. + * + * \sa resize(Index) + */ + void resize(Index rows, Index cols) + { + eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1"); + resize(IsColVector ? rows : cols); + } + + /** Resizes the sparse vector to \a newSize + * This method deletes all entries, thus leaving an empty sparse vector + * + * \sa conservativeResize(), setZero() */ + void resize(Index newSize) + { + m_size = newSize; + m_data.clear(); + } + + /** Resizes the sparse vector to \a newSize, while leaving old values untouched. + * + * If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved. + * Call .data().squeeze() to free extra memory. + * + * \sa reserve(), setZero() + */ + void conservativeResize(Index newSize) + { + if (newSize < m_size) + { + Index i = 0; + while (i<m_data.size() && m_data.index(i)<newSize) ++i; + m_data.resize(i); + } + m_size = newSize; + } + + void resizeNonZeros(Index size) { m_data.resize(size); } + + inline SparseVector() : m_size(0) { check_template_parameters(); resize(0); } + + explicit inline SparseVector(Index size) : m_size(0) { check_template_parameters(); resize(size); } + + inline SparseVector(Index rows, Index cols) : m_size(0) { check_template_parameters(); resize(rows,cols); } + + template<typename OtherDerived> + inline SparseVector(const SparseMatrixBase<OtherDerived>& other) + : m_size(0) + { + #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN + EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN + #endif + check_template_parameters(); + *this = other.derived(); + } + + inline SparseVector(const SparseVector& other) + : Base(other), m_size(0) + { + check_template_parameters(); + *this = other.derived(); + } + + /** Swaps the values of \c *this and \a other. + * Overloaded for performance: this version performs a \em shallow swap by swapping pointers and attributes only. + * \sa SparseMatrixBase::swap() + */ + inline void swap(SparseVector& other) + { + std::swap(m_size, other.m_size); + m_data.swap(other.m_data); + } + + template<int OtherOptions> + inline void swap(SparseMatrix<Scalar,OtherOptions,StorageIndex>& other) + { + eigen_assert(other.outerSize()==1); + std::swap(m_size, other.m_innerSize); + m_data.swap(other.m_data); + } + + inline SparseVector& operator=(const SparseVector& other) + { + if (other.isRValue()) + { + swap(other.const_cast_derived()); + } + else + { + resize(other.size()); + m_data = other.m_data; + } + return *this; + } + + template<typename OtherDerived> + inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other) + { + SparseVector tmp(other.size()); + internal::sparse_vector_assign_selector<SparseVector,OtherDerived>::run(tmp,other.derived()); + this->swap(tmp); + return *this; + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template<typename Lhs, typename Rhs> + inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product) + { + return Base::operator=(product); + } + #endif + + friend std::ostream & operator << (std::ostream & s, const SparseVector& m) + { + for (Index i=0; i<m.nonZeros(); ++i) + s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") "; + s << std::endl; + return s; + } + + /** Destructor */ + inline ~SparseVector() {} + + /** Overloaded for performance */ + Scalar sum() const; + + public: + + /** \internal \deprecated use setZero() and reserve() */ + EIGEN_DEPRECATED void startFill(Index reserve) + { + setZero(); + m_data.reserve(reserve); + } + + /** \internal \deprecated use insertBack(Index,Index) */ + EIGEN_DEPRECATED Scalar& fill(Index r, Index c) + { + eigen_assert(r==0 || c==0); + return fill(IsColVector ? r : c); + } + + /** \internal \deprecated use insertBack(Index) */ + EIGEN_DEPRECATED Scalar& fill(Index i) + { + m_data.append(0, i); + return m_data.value(m_data.size()-1); + } + + /** \internal \deprecated use insert(Index,Index) */ + EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c) + { + eigen_assert(r==0 || c==0); + return fillrand(IsColVector ? r : c); + } + + /** \internal \deprecated use insert(Index) */ + EIGEN_DEPRECATED Scalar& fillrand(Index i) + { + return insert(i); + } + + /** \internal \deprecated use finalize() */ + EIGEN_DEPRECATED void endFill() {} + + // These two functions were here in the 3.1 release, so let's keep them in case some code rely on them. + /** \internal \deprecated use data() */ + EIGEN_DEPRECATED Storage& _data() { return m_data; } + /** \internal \deprecated use data() */ + EIGEN_DEPRECATED const Storage& _data() const { return m_data; } + +# ifdef EIGEN_SPARSEVECTOR_PLUGIN +# include EIGEN_SPARSEVECTOR_PLUGIN +# endif + +protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); + EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); + } + + Storage m_data; + Index m_size; +}; + +namespace internal { + +template<typename _Scalar, int _Options, typename _Index> +struct evaluator<SparseVector<_Scalar,_Options,_Index> > + : evaluator_base<SparseVector<_Scalar,_Options,_Index> > +{ + typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType; + typedef evaluator_base<SparseVectorType> Base; + typedef typename SparseVectorType::InnerIterator InnerIterator; + typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator; + + enum { + CoeffReadCost = NumTraits<_Scalar>::ReadCost, + Flags = SparseVectorType::Flags + }; + + evaluator() : Base() {} + + explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { + return m_matrix->nonZeros(); + } + + operator SparseVectorType&() { return m_matrix->const_cast_derived(); } + operator const SparseVectorType&() const { return *m_matrix; } + + const SparseVectorType *m_matrix; +}; + +template< typename Dest, typename Src> +struct sparse_vector_assign_selector<Dest,Src,SVA_Inner> { + static void run(Dest& dst, const Src& src) { + eigen_internal_assert(src.innerSize()==src.size()); + typedef internal::evaluator<Src> SrcEvaluatorType; + SrcEvaluatorType srcEval(src); + for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it) + dst.insert(it.index()) = it.value(); + } +}; + +template< typename Dest, typename Src> +struct sparse_vector_assign_selector<Dest,Src,SVA_Outer> { + static void run(Dest& dst, const Src& src) { + eigen_internal_assert(src.outerSize()==src.size()); + typedef internal::evaluator<Src> SrcEvaluatorType; + SrcEvaluatorType srcEval(src); + for(Index i=0; i<src.size(); ++i) + { + typename SrcEvaluatorType::InnerIterator it(srcEval, i); + if(it) + dst.insert(i) = it.value(); + } + } +}; + +template< typename Dest, typename Src> +struct sparse_vector_assign_selector<Dest,Src,SVA_RuntimeSwitch> { + static void run(Dest& dst, const Src& src) { + if(src.outerSize()==1) sparse_vector_assign_selector<Dest,Src,SVA_Inner>::run(dst, src); + else sparse_vector_assign_selector<Dest,Src,SVA_Outer>::run(dst, src); + } +}; + +} + +} // end namespace Eigen + +#endif // EIGEN_SPARSEVECTOR_H |