summaryrefslogtreecommitdiff
path: root/Eigen/src/SparseCore/SparseVector.h
diff options
context:
space:
mode:
authorsotech117 <michael_foiani@brown.edu>2024-04-09 03:14:17 -0400
committersotech117 <michael_foiani@brown.edu>2024-04-09 03:14:17 -0400
commit7a8d0d8bc2572707c9d35006f30ea835c86954b0 (patch)
treededb9a65c1698202ad485378b4186b667008abe5 /Eigen/src/SparseCore/SparseVector.h
parent818324678bd5dca790c57048e5012d2937a4b5e5 (diff)
first draft to generate waves
Diffstat (limited to 'Eigen/src/SparseCore/SparseVector.h')
-rw-r--r--Eigen/src/SparseCore/SparseVector.h478
1 files changed, 478 insertions, 0 deletions
diff --git a/Eigen/src/SparseCore/SparseVector.h b/Eigen/src/SparseCore/SparseVector.h
new file mode 100644
index 0000000..05779be
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseVector.h
@@ -0,0 +1,478 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEVECTOR_H
+#define EIGEN_SPARSEVECTOR_H
+
+namespace Eigen {
+
+/** \ingroup SparseCore_Module
+ * \class SparseVector
+ *
+ * \brief a sparse vector class
+ *
+ * \tparam _Scalar the scalar type, i.e. the type of the coefficients
+ *
+ * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
+ *
+ * This class can be extended with the help of the plugin mechanism described on the page
+ * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN.
+ */
+
+namespace internal {
+template<typename _Scalar, int _Options, typename _StorageIndex>
+struct traits<SparseVector<_Scalar, _Options, _StorageIndex> >
+{
+ typedef _Scalar Scalar;
+ typedef _StorageIndex StorageIndex;
+ typedef Sparse StorageKind;
+ typedef MatrixXpr XprKind;
+ enum {
+ IsColVector = (_Options & RowMajorBit) ? 0 : 1,
+
+ RowsAtCompileTime = IsColVector ? Dynamic : 1,
+ ColsAtCompileTime = IsColVector ? 1 : Dynamic,
+ MaxRowsAtCompileTime = RowsAtCompileTime,
+ MaxColsAtCompileTime = ColsAtCompileTime,
+ Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit,
+ SupportedAccessPatterns = InnerRandomAccessPattern
+ };
+};
+
+// Sparse-Vector-Assignment kinds:
+enum {
+ SVA_RuntimeSwitch,
+ SVA_Inner,
+ SVA_Outer
+};
+
+template< typename Dest, typename Src,
+ int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch
+ : Src::InnerSizeAtCompileTime==1 ? SVA_Outer
+ : SVA_Inner>
+struct sparse_vector_assign_selector;
+
+}
+
+template<typename _Scalar, int _Options, typename _StorageIndex>
+class SparseVector
+ : public SparseCompressedBase<SparseVector<_Scalar, _Options, _StorageIndex> >
+{
+ typedef SparseCompressedBase<SparseVector> Base;
+ using Base::convert_index;
+ public:
+ EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector)
+ EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=)
+ EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=)
+
+ typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
+ enum { IsColVector = internal::traits<SparseVector>::IsColVector };
+
+ enum {
+ Options = _Options
+ };
+
+ EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; }
+ EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; }
+ EIGEN_STRONG_INLINE Index innerSize() const { return m_size; }
+ EIGEN_STRONG_INLINE Index outerSize() const { return 1; }
+
+ EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); }
+ EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); }
+
+ EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
+ EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }
+
+ inline const StorageIndex* outerIndexPtr() const { return 0; }
+ inline StorageIndex* outerIndexPtr() { return 0; }
+ inline const StorageIndex* innerNonZeroPtr() const { return 0; }
+ inline StorageIndex* innerNonZeroPtr() { return 0; }
+
+ /** \internal */
+ inline Storage& data() { return m_data; }
+ /** \internal */
+ inline const Storage& data() const { return m_data; }
+
+ inline Scalar coeff(Index row, Index col) const
+ {
+ eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
+ return coeff(IsColVector ? row : col);
+ }
+ inline Scalar coeff(Index i) const
+ {
+ eigen_assert(i>=0 && i<m_size);
+ return m_data.at(StorageIndex(i));
+ }
+
+ inline Scalar& coeffRef(Index row, Index col)
+ {
+ eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
+ return coeffRef(IsColVector ? row : col);
+ }
+
+ /** \returns a reference to the coefficient value at given index \a i
+ * This operation involes a log(rho*size) binary search. If the coefficient does not
+ * exist yet, then a sorted insertion into a sequential buffer is performed.
+ *
+ * This insertion might be very costly if the number of nonzeros above \a i is large.
+ */
+ inline Scalar& coeffRef(Index i)
+ {
+ eigen_assert(i>=0 && i<m_size);
+
+ return m_data.atWithInsertion(StorageIndex(i));
+ }
+
+ public:
+
+ typedef typename Base::InnerIterator InnerIterator;
+ typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
+
+ inline void setZero() { m_data.clear(); }
+
+ /** \returns the number of non zero coefficients */
+ inline Index nonZeros() const { return m_data.size(); }
+
+ inline void startVec(Index outer)
+ {
+ EIGEN_UNUSED_VARIABLE(outer);
+ eigen_assert(outer==0);
+ }
+
+ inline Scalar& insertBackByOuterInner(Index outer, Index inner)
+ {
+ EIGEN_UNUSED_VARIABLE(outer);
+ eigen_assert(outer==0);
+ return insertBack(inner);
+ }
+ inline Scalar& insertBack(Index i)
+ {
+ m_data.append(0, i);
+ return m_data.value(m_data.size()-1);
+ }
+
+ Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
+ {
+ EIGEN_UNUSED_VARIABLE(outer);
+ eigen_assert(outer==0);
+ return insertBackUnordered(inner);
+ }
+ inline Scalar& insertBackUnordered(Index i)
+ {
+ m_data.append(0, i);
+ return m_data.value(m_data.size()-1);
+ }
+
+ inline Scalar& insert(Index row, Index col)
+ {
+ eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
+
+ Index inner = IsColVector ? row : col;
+ Index outer = IsColVector ? col : row;
+ EIGEN_ONLY_USED_FOR_DEBUG(outer);
+ eigen_assert(outer==0);
+ return insert(inner);
+ }
+ Scalar& insert(Index i)
+ {
+ eigen_assert(i>=0 && i<m_size);
+
+ Index startId = 0;
+ Index p = Index(m_data.size()) - 1;
+ // TODO smart realloc
+ m_data.resize(p+2,1);
+
+ while ( (p >= startId) && (m_data.index(p) > i) )
+ {
+ m_data.index(p+1) = m_data.index(p);
+ m_data.value(p+1) = m_data.value(p);
+ --p;
+ }
+ m_data.index(p+1) = convert_index(i);
+ m_data.value(p+1) = 0;
+ return m_data.value(p+1);
+ }
+
+ /**
+ */
+ inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); }
+
+
+ inline void finalize() {}
+
+ /** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */
+ void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
+ {
+ m_data.prune(reference,epsilon);
+ }
+
+ /** Resizes the sparse vector to \a rows x \a cols
+ *
+ * This method is provided for compatibility with matrices.
+ * For a column vector, \a cols must be equal to 1.
+ * For a row vector, \a rows must be equal to 1.
+ *
+ * \sa resize(Index)
+ */
+ void resize(Index rows, Index cols)
+ {
+ eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1");
+ resize(IsColVector ? rows : cols);
+ }
+
+ /** Resizes the sparse vector to \a newSize
+ * This method deletes all entries, thus leaving an empty sparse vector
+ *
+ * \sa conservativeResize(), setZero() */
+ void resize(Index newSize)
+ {
+ m_size = newSize;
+ m_data.clear();
+ }
+
+ /** Resizes the sparse vector to \a newSize, while leaving old values untouched.
+ *
+ * If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved.
+ * Call .data().squeeze() to free extra memory.
+ *
+ * \sa reserve(), setZero()
+ */
+ void conservativeResize(Index newSize)
+ {
+ if (newSize < m_size)
+ {
+ Index i = 0;
+ while (i<m_data.size() && m_data.index(i)<newSize) ++i;
+ m_data.resize(i);
+ }
+ m_size = newSize;
+ }
+
+ void resizeNonZeros(Index size) { m_data.resize(size); }
+
+ inline SparseVector() : m_size(0) { check_template_parameters(); resize(0); }
+
+ explicit inline SparseVector(Index size) : m_size(0) { check_template_parameters(); resize(size); }
+
+ inline SparseVector(Index rows, Index cols) : m_size(0) { check_template_parameters(); resize(rows,cols); }
+
+ template<typename OtherDerived>
+ inline SparseVector(const SparseMatrixBase<OtherDerived>& other)
+ : m_size(0)
+ {
+ #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
+ EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
+ #endif
+ check_template_parameters();
+ *this = other.derived();
+ }
+
+ inline SparseVector(const SparseVector& other)
+ : Base(other), m_size(0)
+ {
+ check_template_parameters();
+ *this = other.derived();
+ }
+
+ /** Swaps the values of \c *this and \a other.
+ * Overloaded for performance: this version performs a \em shallow swap by swapping pointers and attributes only.
+ * \sa SparseMatrixBase::swap()
+ */
+ inline void swap(SparseVector& other)
+ {
+ std::swap(m_size, other.m_size);
+ m_data.swap(other.m_data);
+ }
+
+ template<int OtherOptions>
+ inline void swap(SparseMatrix<Scalar,OtherOptions,StorageIndex>& other)
+ {
+ eigen_assert(other.outerSize()==1);
+ std::swap(m_size, other.m_innerSize);
+ m_data.swap(other.m_data);
+ }
+
+ inline SparseVector& operator=(const SparseVector& other)
+ {
+ if (other.isRValue())
+ {
+ swap(other.const_cast_derived());
+ }
+ else
+ {
+ resize(other.size());
+ m_data = other.m_data;
+ }
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other)
+ {
+ SparseVector tmp(other.size());
+ internal::sparse_vector_assign_selector<SparseVector,OtherDerived>::run(tmp,other.derived());
+ this->swap(tmp);
+ return *this;
+ }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename Lhs, typename Rhs>
+ inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
+ {
+ return Base::operator=(product);
+ }
+ #endif
+
+ friend std::ostream & operator << (std::ostream & s, const SparseVector& m)
+ {
+ for (Index i=0; i<m.nonZeros(); ++i)
+ s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
+ s << std::endl;
+ return s;
+ }
+
+ /** Destructor */
+ inline ~SparseVector() {}
+
+ /** Overloaded for performance */
+ Scalar sum() const;
+
+ public:
+
+ /** \internal \deprecated use setZero() and reserve() */
+ EIGEN_DEPRECATED void startFill(Index reserve)
+ {
+ setZero();
+ m_data.reserve(reserve);
+ }
+
+ /** \internal \deprecated use insertBack(Index,Index) */
+ EIGEN_DEPRECATED Scalar& fill(Index r, Index c)
+ {
+ eigen_assert(r==0 || c==0);
+ return fill(IsColVector ? r : c);
+ }
+
+ /** \internal \deprecated use insertBack(Index) */
+ EIGEN_DEPRECATED Scalar& fill(Index i)
+ {
+ m_data.append(0, i);
+ return m_data.value(m_data.size()-1);
+ }
+
+ /** \internal \deprecated use insert(Index,Index) */
+ EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c)
+ {
+ eigen_assert(r==0 || c==0);
+ return fillrand(IsColVector ? r : c);
+ }
+
+ /** \internal \deprecated use insert(Index) */
+ EIGEN_DEPRECATED Scalar& fillrand(Index i)
+ {
+ return insert(i);
+ }
+
+ /** \internal \deprecated use finalize() */
+ EIGEN_DEPRECATED void endFill() {}
+
+ // These two functions were here in the 3.1 release, so let's keep them in case some code rely on them.
+ /** \internal \deprecated use data() */
+ EIGEN_DEPRECATED Storage& _data() { return m_data; }
+ /** \internal \deprecated use data() */
+ EIGEN_DEPRECATED const Storage& _data() const { return m_data; }
+
+# ifdef EIGEN_SPARSEVECTOR_PLUGIN
+# include EIGEN_SPARSEVECTOR_PLUGIN
+# endif
+
+protected:
+
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
+ EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
+ }
+
+ Storage m_data;
+ Index m_size;
+};
+
+namespace internal {
+
+template<typename _Scalar, int _Options, typename _Index>
+struct evaluator<SparseVector<_Scalar,_Options,_Index> >
+ : evaluator_base<SparseVector<_Scalar,_Options,_Index> >
+{
+ typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType;
+ typedef evaluator_base<SparseVectorType> Base;
+ typedef typename SparseVectorType::InnerIterator InnerIterator;
+ typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator;
+
+ enum {
+ CoeffReadCost = NumTraits<_Scalar>::ReadCost,
+ Flags = SparseVectorType::Flags
+ };
+
+ evaluator() : Base() {}
+
+ explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat)
+ {
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
+ }
+
+ inline Index nonZerosEstimate() const {
+ return m_matrix->nonZeros();
+ }
+
+ operator SparseVectorType&() { return m_matrix->const_cast_derived(); }
+ operator const SparseVectorType&() const { return *m_matrix; }
+
+ const SparseVectorType *m_matrix;
+};
+
+template< typename Dest, typename Src>
+struct sparse_vector_assign_selector<Dest,Src,SVA_Inner> {
+ static void run(Dest& dst, const Src& src) {
+ eigen_internal_assert(src.innerSize()==src.size());
+ typedef internal::evaluator<Src> SrcEvaluatorType;
+ SrcEvaluatorType srcEval(src);
+ for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it)
+ dst.insert(it.index()) = it.value();
+ }
+};
+
+template< typename Dest, typename Src>
+struct sparse_vector_assign_selector<Dest,Src,SVA_Outer> {
+ static void run(Dest& dst, const Src& src) {
+ eigen_internal_assert(src.outerSize()==src.size());
+ typedef internal::evaluator<Src> SrcEvaluatorType;
+ SrcEvaluatorType srcEval(src);
+ for(Index i=0; i<src.size(); ++i)
+ {
+ typename SrcEvaluatorType::InnerIterator it(srcEval, i);
+ if(it)
+ dst.insert(i) = it.value();
+ }
+ }
+};
+
+template< typename Dest, typename Src>
+struct sparse_vector_assign_selector<Dest,Src,SVA_RuntimeSwitch> {
+ static void run(Dest& dst, const Src& src) {
+ if(src.outerSize()==1) sparse_vector_assign_selector<Dest,Src,SVA_Inner>::run(dst, src);
+ else sparse_vector_assign_selector<Dest,Src,SVA_Outer>::run(dst, src);
+ }
+};
+
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEVECTOR_H