1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
#version 330 core
layout(location = 0) in vec3 position; // Position of the vertex
layout(location = 1) in vec3 normal; // Normal of the vertex
layout(location = 2) in vec3 texCoords; // Normal of the vertex
uniform float depth = -1000.f;
uniform float skyHeight = 500.f;
uniform mat4 proj;
uniform mat4 view;
uniform mat4 model;
uniform mat4 inverseView;
//uniform float width;
//uniform float height; // TODO: Pass in width and height as uniform
uniform mat3 inverseTransposeModel;
out vec3 normal_cameraSpace;
out vec3 normal_worldSpace;
out vec3 camera_worldSpace;
out vec3 pos;
out float intensity;
out vec3 oldPosFlat;
uniform vec2 widthBounds;
uniform vec2 lengthBounds;
vec3 moveToTopDown(vec3 p) {
return vec3((p[0] - ((widthBounds[0] + widthBounds[1]) / 2)) / (widthBounds[1] - widthBounds[0]) * 2,
-(p[2] - ((lengthBounds[0] + lengthBounds[1]) / 2)) * 2 / (lengthBounds[1] - lengthBounds[0]), 0.f);
}
vec4 refractToFloor(vec3 l, vec3 p, vec3 n, float d) {
// Refracts incoming light direction l through normal n at point p until hits floor at depth d
vec3 w_o = normalize(l);
float cos_theta_i = dot(-w_o, n);
float n_i = 1;
float n_t = 1.33f;
float determinant = 1.f - (pow((n_i / n_t), 2.f) * (1.f - pow(cos_theta_i, 2.f)));
float r0 = pow((n_i - n_t) / (n_i + n_t), 2.f); // variable required to calculate probability of reflection
float prob_to_refl = r0 + ((1 - r0) * pow((1 - cos_theta_i), 5.f));
if (determinant >= 0) {
float cos_theta_t = sqrt(determinant);
vec3 w_t = (n_i / n_t) * w_o + ((n_i / n_t) * cos_theta_i - cos_theta_t) * n;
float dist = p.y - d;
float depthScale = dist / w_t.y;
vec3 groundContactPoint = -(w_t * depthScale) + p;
return vec4(groundContactPoint, 1.f - prob_to_refl);
} else {
return vec4(0, 0, 0, 0);
}
}
vec3 wrapGL(vec3 p) {
float newX = p[0];
float newY = p[1];
newX = mod(newX + 1.f, 2.f) - 1.f;
newY = mod(newY + 1.f, 2.f) - 1.f;
return vec3(newX, newY, 0.f);
}
void main() {
normal_cameraSpace = normalize(inverse(transpose(mat3(view))) * inverseTransposeModel * normal);
camera_worldSpace = vec3(inverseView * vec4(0.f, 0.f, 0.f, 1.f));
normal_worldSpace = normal;
pos = vec3(model * vec4(position, 1.f)); //vec3(model * vec4(objSpacePos, 1.f));
vec3 lightDir = -normalize(vec3(1, -1, 1));
gl_Position = proj * view * model * vec4(position, 1);
// gl_Position = vec4((position[0] - ((widthBounds[0] + widthBounds[1]) / 2)) / (widthBounds[1] - widthBounds[0]) * 2,
// (position[2] - ((lengthBounds[0] + lengthBounds[1]) / 2)) / (lengthBounds[1] - lengthBounds[0]) * 2, 0.f, 1.f);
float newX = mod(int(position[0]), 3) - 1;
float newY = mod(int(position[2]), 3) - 1;
vec4 refractedPositionAndProb = refractToFloor(-lightDir, position, normal_worldSpace, depth);
float waterMurkiness = .002f;
gl_Position = vec4(newX, newY, 0.f, 1.f);
intensity = refractedPositionAndProb[3] * clamp(dot(normal_worldSpace, lightDir), 0.f, 1.f) * exp(-length((position - vec3(refractedPositionAndProb))) * waterMurkiness);
oldPosFlat = moveToTopDown(position);
pos = moveToTopDown(vec3(refractedPositionAndProb));
gl_Position = vec4(pos, 1.f);
gl_Position = vec4(oldPosFlat, 1.f);
}
|